Skip to main content

Advertisement

Log in

Diaphyseal long bone nonunions — types, aetiology, economics, and treatment recommendations

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The intention of the current article is to review the epidemiology with related socioeconomic costs, pathophysiology, and treatment options for diaphyseal long bone delayed unions and nonunions. Diaphyseal nonunions in the tibia and in the femur are estimated to occur 4.6–8% after modern intramedullary nailing of closed fractures with an even much higher risk in open fractures. There is a high socioeconomic burden for long bone nonunions mainly driven by indirect costs, such as productivity losses due to long treatment duration. The classic classification of Weber and Cech of the 1970s is based on the underlying biological aspect of the nonunion differentiating between “vital” (hypertrophic) and “avital” (hypo−/atrophic) nonunions, and can still be considered to represent the basis for basic evaluation of nonunions. The “diamond concept” units biomechanical and biological aspects and provides the pre-requisites for successful bone healing in nonunions. For humeral diaphyseal shaft nonunions, excellent results for augmentation plating were reported. In atrophic humeral shaft nonunions, compression plating with stimulation of bone healing by bone grafting or BMPs seem to be the best option. For femoral and tibial diaphyseal shaft fractures, dynamization of the nail is an atraumatic, effective, and cheap surgical possibility to achieve bony consolidation, particularly in delayed nonunions before 24 weeks after initial surgery. In established hypertrophic nonunions in the tibia and femur, biomechanical stability should be addressed by augmentation plating or exchange nailing. Hypotrophic or atrophic nonunions require additional biological stimulation of bone healing for augmentation plating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weber BG, Cech O (1973) Pseudarthrosen. Pathophysiologie Biomechanik Therapie Ergebnisse. Huber, Bern

  2. Frolke JP, Patka P (2007) Definition and classification of fracture non-unions. Injury 38(Suppl 2):S19–S22

    Article  PubMed  Google Scholar 

  3. Einhorn TA (1995) Enhancement of fracture-healing. J Bone Joint Surg Am 77:940–956

    Article  CAS  PubMed  Google Scholar 

  4. Mills LA, Aitken SA, Simpson AHR (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88:434-439. https://doi.org/10.1080/17453674.2017.1321351

  5. Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, Simpson H, Alt V (2014) Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45(Suppl 2):S3–S7. https://doi.org/10.1016/j.injury.2014.04.002

    Article  PubMed  Google Scholar 

  6. Mills LA, Simpson AH (2013) The relative incidence of fracture non-union in the Scottish population (5.17 million): a 5-year epidemiological study. BMJ Open. https://doi.org/10.1136/bmjopen-2012-002276

  7. Nandra R, Grover L, Porter K (2015) Fracture non-union epidemiology and treatment. Trauma 18:3–11. https://doi.org/10.1177/1460408615591625

  8. Peters RM, Claessen FM, Doornberg JN, Kolovich GP, Diercks RL, van den Bekerom MP (2015) Union rate after operative treatment of humeral shaft nonunion--a systematic review. Injury 46:2314–2324. https://doi.org/10.1016/j.injury.2015.09.041

    Article  PubMed  Google Scholar 

  9. Giannoudis P, MacDonald D, Matthews S, Smith R, Furlong A, De Boer P (2000) Nonunion of the femoral diaphysis. Bone Joint J 82:655–658

    Article  CAS  Google Scholar 

  10. Canadian Orthopaedic Trauma S (2003) Nonunion following intramedullary nailing of the femur with and without reaming. Results of a multicenter randomized clinical trial. J Bone Joint Surg Am Vol 85-A:2093–2096

    Article  Google Scholar 

  11. Investigators SPERINPTF (2008) Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am 90:2567

    Article  Google Scholar 

  12. Vallier HA, Cureton BA, Patterson BM (2011) Randomized, prospective comparison of plate versus intramedullary nail fixation for distal tibia shaft fractures. J Orthop Trauma 25:736–741. https://doi.org/10.1097/BOT.0b013e318213f709

    Article  PubMed  Google Scholar 

  13. Sanders R, Jersinovich I, Anglen J, DiPasquale T, Herscovici D Jr (1994) The treatment of open tibial shaft fractures using an interlocked intramedullary nail without reaming. J Orthop Trauma 8:504–510

    Article  CAS  PubMed  Google Scholar 

  14. Court-Brown CM (2004) Reamed intramedullary tibial nailing: an overview and analysis of 1106 cases. J Orthop Trauma 18:96–101

    Article  CAS  PubMed  Google Scholar 

  15. Antonova E, Le TK, Burge R, Mershon J (2013) Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khunda A, Al-Maiyah M, Eardley W, Montgomery R (2016) The management of tibial fracture non-union using the Taylor spatial frame. J Orthop 13:360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper A (1842) A treatise on dislocations and fractures of the joints. Churchill, London

    Google Scholar 

  18. Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WE (2009) Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 45:726–735. https://doi.org/10.1016/j.bone.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  19. Iwakura T, Miwa M, Sakai Y, Niikura T, Lee SY, Oe K, Hasegawa T, Kuroda R, Fujioka H, Doita M (2009) Human hypertrophic nonunion tissue contains mesenchymal progenitor cells with multilineage capacity in vitro. J Orthop Res 27:208–215

    Article  CAS  PubMed  Google Scholar 

  20. Panteli M, Pountos I, Jones E, Giannoudis PV (2015) Biological and molecular profile of fracture non-union tissue: current insights. J Cell Mol Med 19:685–713

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reed A, Joyner C, Brownlow H, Simpson A (2002) Human atrophic fracture non-unions are not avascular. J Orthop Res 20:593–599

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann A, Ritz U, Hessmann M, Schmid C, Tresch A, Rompe J, Meurer A, Rommens P (2008) Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions. Bone 42:894–906

    Article  CAS  PubMed  Google Scholar 

  23. McDonald MM, Morse A, Mikulec K, Peacock L, Baldock PA, Kostenuik PJ, Little DG (2013) Matrix metalloproteinase–driven endochondral fracture union proceeds independently of osteoclast activity. J Bone Miner Res 28:1550–1560

    Article  CAS  PubMed  Google Scholar 

  24. Fajardo M, Liu C-J, Ilalov K, Egol KA (2010) Matrix metalloproteinases that associate with and cleave bone morphogenetic protein-2 in vitro are elevated in hypertrophic fracture nonunion tissue. J Orthop Trauma 24:557–563

    Article  PubMed  Google Scholar 

  25. Zeckey C, Hildebrand F, Glaubitz LM, Jürgens S, Ludwig T, Andruszkow H, Hüfner T, Krettek C, Stuhrmann M (2011) Are polymorphisms of molecules involved in bone healing correlated to aseptic femoral and tibial shaft non-unions? J Orthop Res 29:1724–1731

    Article  CAS  PubMed  Google Scholar 

  26. Xiong D-H, Liu X-G, Guo Y-F, Tan L-J, Wang L, Sha B-Y, Tang Z-H, Pan F, Yang T-L, Chen X-D (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15:577–584

    Article  CAS  PubMed  Google Scholar 

  28. Claes L, Grass R, Schmickal T, Kisse B, Eggers C, Gerngross H, Mutschler W, Arand M, Wintermeyer T, Wentzensen A (2002) Monitoring and healing analysis of 100 tibial shaft fractures. Langenbeck's Arch Surg 387:146–152

    Article  CAS  Google Scholar 

  29. Gaebler C, Berger U, Schandelmaier P, Greitbauer M, Schauwecker HH, Applegate B, Zych G, Vecsei V (2001) Rates and odds ratios for complications in closed and open tibial fractures treated with unreamed, small diameter tibial nails: a multicenter analysis of 467 cases. J Orthop Trauma 15:415–423

    Article  CAS  PubMed  Google Scholar 

  30. Drosos G, Bishay M, Karnezis I, Alegakis A (2006) Factors affecting fracture healing after intramedullary nailing of the tibial diaphysis for closed and grade I open fractures. Bone Joint J 88:227–231

    Article  CAS  Google Scholar 

  31. Schemitsch EH, Bhandari M, Guyatt G, Sanders DW, Swiontkowski M, Tornetta P, Walter SD, Zdero R, Goslings JC, Teague D, Jeray K, McKee MD, Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial Fractures I (2012) Prognostic factors for predicting outcomes after intramedullary nailing of the tibia. J Bone Joint Surg Am 94:1786-1793. https://doi.org/10.2106/JBJS.J.01418

  32. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Della Rocca GJ, Mehta S, McKinley T, Wang Z, Steen RG (2016) Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 151:e162775. https://doi.org/10.1001/jamasurg.2016.2775

    Article  PubMed  Google Scholar 

  33. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38:S3–S6

    Article  Google Scholar 

  34. Klemm K, Schellmann W (1972) Dynamische und statische Verriegelung des Marknagels. Monatsschr Unfallheilkd 75:303

    Google Scholar 

  35. Egger EL, Gottsauner-Wolf F, Palmer J, Aro HT, Chao E (1993) Effects of axial dynamization on bone healing. J Trauma 34:185–192

    Article  CAS  PubMed  Google Scholar 

  36. Claes L, Wilke H, Augat P, Rübenacker S, Margevicius K (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech 10:227–234

    Article  CAS  Google Scholar 

  37. Kempf I, Grosse A, Beck G (1985) Closed locked intramedullary nailing. Its application to comminuted fractures of the femur. J Bone Joint Surg Am Vol 67:709–720

    Article  CAS  Google Scholar 

  38. Foxworthy M, Pringle R (1995) Dynamization timing and its effect on bone healing when using the Orthofix dynamic axial Fixator. Injury 26:117–119

    Article  CAS  PubMed  Google Scholar 

  39. Glatt V, Evans CH, Tetsworth K (2016) A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol 7:678. https://doi.org/10.3389/fphys.2016.00678

    PubMed  Google Scholar 

  40. Pihlajamäki HK, Salminen ST, Böstman OM (2002) The treatment of nonunions following intramedullary nailing of femoral shaft fractures. J Orthop Trauma 16:394–402

    Article  PubMed  Google Scholar 

  41. Wu CC (1997) The effect of dynamization on slowing the healing of femur shaft fractures after interlocking nailing. J Trauma 43:263–267

    Article  CAS  PubMed  Google Scholar 

  42. Papakostidis C, Psyllakis I, Vardakas D, Grestas A, Giannoudis PV (2011) Femoral-shaft fractures and nonunions treated with intramedullary nails: the role of dynamisation. Injury 42:1353–1361

    Article  PubMed  Google Scholar 

  43. Vaughn J, Gotha H, Cohen E, Fantry AJ, Feller RJ, Van Meter J, Hayda R, Born CT (2016) Nail Dynamization for delayed union and nonunion in femur and tibia fractures. Orthopedics 39:e1117–e1123. https://doi.org/10.3928/01477447-20160819-01

    Article  PubMed  Google Scholar 

  44. Claes L, Blakytny R, Göckelmann M, Schoen M, Ignatius A, Willie B (2009) Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J Orthop Res 27:22–27

    Article  PubMed  Google Scholar 

  45. Claes L, Blakytny R, Besse J, Bausewein C, Ignatius A, Willie B (2011) Late dynamization by reduced fixation stiffness enhances fracture healing in a rat femoral osteotomy model. J Orthop Trauma 25:169–174

    Article  PubMed  Google Scholar 

  46. Huang KC, Tong KM, Lin YM, Loh el W, Hsu CE (2012) Evaluation of methods and timing in nail dynamisation for treating delayed healing femoral shaft fractures. Injury 43:1747-1752. https://doi.org/10.1016/j.injury.2012.06.024

  47. Litrenta J, Tornetta P 3rd, Vallier H, Firoozabadi R, Leighton R, Egol K, Kruppa C, Jones CB, Collinge C, Bhandari M, Schemitsch E, Sanders D, Mullis B (2015) Dynamizations and exchanges: success rates and indications. J Orthop Trauma 29:569–573. https://doi.org/10.1097/BOT.0000000000000311

    Article  PubMed  Google Scholar 

  48. Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone reports 6:87–100. https://doi.org/10.1016/j.bonr.2017.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brinker MR, O'connor DP (2007) Exchange nailing of ununited fractures. The Journal of Bone & Joint Surgery 89:177–188

    Article  Google Scholar 

  50. Wenisch S, Trinkaus K, Hild A, Hose D, Herde K, Heiss C, Kilian O, Alt V, Schnettler R (2005) Human reaming debris: a source of multipotent stem cells. Bone 36:74–83

    Article  PubMed  Google Scholar 

  51. Hoffmann S, Gerber C, von Oldenburg G, Kessler M, Stephan D, Augat P (2015) Effect of angular stability and other locking parameters on the mechanical performance of intramedullary nails. Biomed Tech (Berl) 60:157–164. https://doi.org/10.1515/bmt-2014-0100

    Article  CAS  Google Scholar 

  52. Hierholzer C, Friederichs J, Glowalla C, Woltmann A, Buhren V, von Ruden C (2016) Reamed intramedullary exchange nailing in the operative treatment of aseptic tibial shaft nonunion. Int Orthop. https://doi.org/10.1007/s00264-016-3317-x

  53. Abadie B, Leas D, Cannada L, Malm P, Morwood M, Howes C, Zura R, Healy K, Avery M, Schlatterer D (2016) Does screw configuration or fibular Osteotomy decrease healing time in exchange Tibial nailing? J Orthop Trauma 30:622–626

    Article  PubMed  Google Scholar 

  54. Shroeder JE, Mosheiff R, Khoury A, Liebergall M, Weil YA (2009) The outcome of closed, intramedullary exchange nailing with reamed insertion in the treatment of femoral shaft nonunions. J Orthop Trauma 23:653–657

    Article  PubMed  Google Scholar 

  55. Hak DJ, Lee SS, Goulet JA (2000) Success of exchange reamed intramedullary nailing for femoral shaft nonunion or delayed union. J Orthop Trauma 14:178–182

    Article  CAS  PubMed  Google Scholar 

  56. Tsang ST, Mills LA, Frantzias J, Baren JP, Keating JF, Simpson AH (2016) Exchange nailing for nonunion of diaphyseal fractures of the tibia: our results and an analysis of the risk factors for failure. Bone Joint J 98-B:534–541. https://doi.org/10.1302/0301-620X.98B4.34870

    Article  CAS  PubMed  Google Scholar 

  57. Lin J, Chiang H, Hou S-M (2003) Open exchange locked nailing in humeral nonunions after intramedullary nailing. Clin Orthop Relat Res 411:260–268

    Article  Google Scholar 

  58. McKee MD, Miranda MA, Riemer BL, Blasier RB, Redmond BJ, Sims SH, Waddell JP, Jupiter JB (1996) Management of humeral nonunion after the failure of locking intramedullary nails. J Orthop Trauma 10:492–499

    Article  CAS  PubMed  Google Scholar 

  59. Flinkkilä T, Ristiniemi J, Hämäläinen M (2001) Nonunion after intramedullary nailing of humeral shaft fractures. J Trauma Acute Care Surg 50:540–544

    Article  Google Scholar 

  60. Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38(Suppl 1):S75–S80. https://doi.org/10.1016/j.injury.2007.02.012

    Article  PubMed  Google Scholar 

  61. Megas P (2005) Classification of non-union. Injury 36(Suppl 4):S30–S37. https://doi.org/10.1016/j.injury.2005.10.008

    PubMed  Google Scholar 

  62. Dekker TJ, White P, Adams SB (2016) Efficacy of a cellular bone allograft for foot and ankle arthrodesis and revision nonunion procedures. Foot Ankle Int 1071100716674977

  63. Dawson J, Kiner D, Warren Gardner I, Swafford R, Nowotarski PJ (2014) The reamer–irrigator–aspirator as a device for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop Trauma 28:584–590

    Article  PubMed  Google Scholar 

  64. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM (2005) The biology of bone grafting. J Am Acad Orthopaed Surg 13:77–86

    Article  Google Scholar 

  65. Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu T-MG, Boerckel JD, Kacena MA (2015) Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clin Rev Bone Mineral Metab 13:232–244

    Article  CAS  Google Scholar 

  66. Cox G, Jones E, McGonagle D, Giannoudis PV (2011) Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop 35:951–956

    Article  PubMed  PubMed Central  Google Scholar 

  67. Calori G, Colombo M, Mazza E, Mazzola S, Malagoli E, Mineo G (2014) Incidence of donor site morbidity following harvesting from iliac crest or RIA graft. Injury 45:S116–S120

    Article  PubMed  Google Scholar 

  68. Emara KM, Diab RA, Emara AK (2015) Recent biological trends in management of fracture non-union. World J Orthoped 6:623

    Article  Google Scholar 

  69. Tomford WW (2000) Bone allografts: past, present and future. Cell Tissue Bank 1:105–109

    Article  CAS  PubMed  Google Scholar 

  70. Roberts TT, Rosenbaum AJ (2012) Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organ 8:114–124

    Google Scholar 

  71. Sutherland A, Raafat A, Yates P, Hutchison J (1997) Infection associated with the use of allograft bone from the north east Scotland bone Bank. J Hosp Infect 35:215–222

    Article  CAS  PubMed  Google Scholar 

  72. Liu J, Chao L, Su L, Wang J, Wang C (2002) Experience with a bone bank operation and allograft bone infection in recipients at a medical centre in southern Taiwan. J Hosp Infect 50:293–297

    Article  CAS  PubMed  Google Scholar 

  73. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1535

    Article  CAS  PubMed  Google Scholar 

  74. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  PubMed  Google Scholar 

  75. Garrison KR, Shemilt I, Donell S, Ryder JJ, Mugford M, Harvey I, Song F, Alt V (2010) Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 16:CD006950. https://doi.org/10.1002/14651858.CD006950.pub2

  76. Miska M, Findeisen S, Tanner M, Biglari B, Studier-Fischer S, Grützner P, Schmidmaier G, Moghaddam A (2016) Treatment of nonunions in fractures of the humeral shaft according to the diamond concept. Bone Joint J 98:81–87

    Article  PubMed  Google Scholar 

  77. Singh R, Bleibleh S, Kanakaris NK, Giannoudis PV (2016) Upper limb non-unions treated with BMP-7: efficacy and clinical results. Injury 47:S33–S39

    Article  PubMed  Google Scholar 

  78. Pneumaticos SG, Panteli M, Triantafyllopoulos GK, Papakostidis C, Giannoudis PV (2014) Management and outcome of diaphyseal aseptic non-unions of the lower limb: a systematic review. The surgeon 12:166–175

    Article  PubMed  Google Scholar 

  79. Alt V, Meyer C, Litzlbauer HD, Schnettler R (2007) Treatment of a double nonunion of the femur by rhBMP-2. J Orthop Trauma 21:734–737

    Article  PubMed  Google Scholar 

  80. Schell H, Duda G, Peters A, Tsitsilonis S, Johnson K, Schmidt-Bleek K (2017) The haematoma and its role in bone healing. J Experiment Orthopaed 4:5

    Article  CAS  Google Scholar 

  81. Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I (2007) Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int 80:294–300

    Article  CAS  PubMed  Google Scholar 

  82. Mathieu M, Rigutto S, Ingels A, Spruyt D, Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J, Bastianelli E (2013) Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone 53:391–398

    Article  CAS  PubMed  Google Scholar 

  83. Goujon E (1869) Recherches expérimentales sur les propriétés du tissu osseux. JL Anat 6:399–412

    Google Scholar 

  84. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) HETEROTOPIC transplants of bone marrow. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  85. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  86. Paley D, Young MC, Wiley AM, Fornasier VL, Jackson RW (1986) Percutaneous bone marrow grafting of fractures and bony defects an experimental study in rabbits. Clin Orthop Relat Res 208:300

    Google Scholar 

  87. Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270

    Google Scholar 

  88. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162

    Article  CAS  PubMed  Google Scholar 

  89. Homma Y, Zimmermann G, Hernigou P (2013) Cellular therapies for the treatment of non-union: the past, present and future. Injury 44:S46–S49

    Article  PubMed  Google Scholar 

  90. Bajada S, Harrison P, Ashton B, Cassar-Pullicino V, Ashammakhi N, Richardson J (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. Bone Joint J 89:1382–1386

    Article  CAS  Google Scholar 

  91. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am vol 87:1430–1437. https://doi.org/10.2106/JBJS.D.02215

    Google Scholar 

  92. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  PubMed  Google Scholar 

  93. Wittig O, Romano E, Gonzalez C, Diaz-Solano D, Marquez ME, Tovar P, Aoun R, Cardier JE (2016) A method of treatment for nonunion after fractures using mesenchymal stromal cells loaded on collagen microspheres and incorporated into platelet-rich plasma clots. Int Orthop 40:1033–1038. https://doi.org/10.1007/s00264-016-3130-6

    Article  PubMed  Google Scholar 

  94. Kazmers NH, Fragomen AT, Rozbruch SR (2016) Prevention of pin site infection in external fixation: a review of the literature. Strategies Trauma Limb Reconstr 11:75–85

  95. Kadhim M, Holmes L Jr, Gesheff MG, Conway JD (2017) Treatment options for nonunion with segmental bone defects: systematic review and quantitative evidence synthesis. J Orthop Trauma 31:111–119. https://doi.org/10.1097/BOT.0000000000000700

    Article  PubMed  Google Scholar 

  96. Harshwal RK, Sankhala SS, Jalan D (2014) Management of nonunion of lower-extremity long bones using mono-lateral external fixator–report of 37 cases. Injury 45:560–567

    Article  PubMed  Google Scholar 

  97. Brinker MR, O'Connor DP (2003) Ilizarov compression over a nail for aseptic femoral nonunions that have failed exchange nailing: a report of five cases. J Orthop Trauma 17:668–676

    Article  PubMed  Google Scholar 

  98. El-Rosasy MA (2012) Nonunited humerus shaft fractures treated by external fixator augmented by intramedullary rod. Indian J Orthopaed 46:58

    Article  Google Scholar 

  99. Ilizarov G, Lediaev V (1969) Replacement of defects of long tubular bones by means of one of their fragments. Vestnik khirurgii imeni II Grekova 102:77

    CAS  Google Scholar 

  100. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthopaed Relat Res 239:263–285

    Google Scholar 

  101. Green SA (1994) Skeletal defects a comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res 301:111–117

    Google Scholar 

  102. Oh CW, Apivatthakakul T, Oh JK, Kim JW, Lee HJ, Kyung HS, Baek SG, Jung GH (2013) Bone transport with an external fixator and a locking plate for segmental tibial defects. The bone & joint journal 95-B:1667–1672. https://doi.org/10.1302/0301-620X.95B12.31507

    Article  Google Scholar 

  103. Kadhim M, Holmes L Jr, Gesheff MG, Conway JD (2017) Treatment options for nonunion with segmental bone defects: systematic review and quantitative evidence synthesis. J Orthop Trauma 31:111–119

    Article  PubMed  Google Scholar 

  104. Ueng SW, Chao E-K, Lee S-S, Shih C-H (1997) Augmentative plate fixation for the management of femoral nonunion after intramedullary nailing. J Trauma Acute Care Surg 43:640–644

    Article  CAS  Google Scholar 

  105. Wang Z, Liu C, Liu C, Zhou Q, Liu J (2014) Effectiveness of exchange nailing and augmentation plating for femoral shaft nonunion after nailing. Int Orthop 38:2343–2347

    Article  PubMed  Google Scholar 

  106. Park J, Kim SG, Yoon HK, Yang KH (2010) The treatment of nonisthmal femoral shaft nonunions with im nail exchange versus augmentation plating. J Orthop Trauma 24:89–94

    Article  PubMed  Google Scholar 

  107. Birjandinejad A, Ebrahimzadeh MH, Ahmadzadeh-Chabock H (2009) Augmentation plate fixation for the treatment of femoral and tibial nonunion after intramedullary nailing. Orthopedics 32:409. https://doi.org/10.3928/01477447-20090511-12

  108. Ateschrang A, Albrecht D, Stockle U, Weise K, Stuby F, Zieker D (2013) High success rate for augmentation compression plating leaving the nail in situ for aseptic diaphyseal tibial nonunions. J Orthop Trauma 27:145–149. https://doi.org/10.1097/BOT.0b013e31825d01b2

    Article  PubMed  Google Scholar 

  109. Gessmann J, Königshausen M, Coulibaly MO, Schildhauer TA, Seybold D (2016) Anterior augmentation plating of aseptic humeral shaft nonunions after intramedullary nailing. Arch Orthop Trauma Surg 136:631–638

    Article  PubMed  Google Scholar 

  110. Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88:1442–1447. https://doi.org/10.2106/JBJS.E.00332

    PubMed  Google Scholar 

  111. Huang K-C, Tong K-M, Lin Y-M, Loh E-W, Hsu C-E (2012) Evaluation of methods and timing in nail dynamisation for treating delayed healing femoral shaft fractures. Injury 43:1747–1752

    Article  PubMed  Google Scholar 

  112. Lin CJ, Chiang CC, Wu PK, Chen CF, Huang CK, Su AW, Chen WM, Liu CL, Chen TH (2012) Effectiveness of plate augmentation for femoral shaft nonunion after nailing. J Chin Med Association 75:396–401. https://doi.org/10.1016/j.jcma.2012.06.008

  113. Choi Y, Kim K (2005) Plate augmentation leaving the nail in situ and bone grafting for non-union of femoral shaft fractures. Int Orthop 29:287–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Feldman DS, Shin SS, Madan S, Koval KJ (2003) Correction of tibial malunion and nonunion with six-axis analysis deformity correction using the Taylor spatial frame. J Orthop Trauma 17:549–554

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Alt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupp, M., Biehl, C., Budak, M. et al. Diaphyseal long bone nonunions — types, aetiology, economics, and treatment recommendations. International Orthopaedics (SICOT) 42, 247–258 (2018). https://doi.org/10.1007/s00264-017-3734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3734-5

Keywords

Navigation