Skip to main content

Advertisement

Log in

Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Pulsed electromagnetic fields (PEMFs) may improve clinical outcomes following microfractures and prevent their decline over time.

Methods

Sixty-eight patients who underwent partial medial meniscectomy and microfractures to the medial femoral condyle for management of grade III–IV cartilage lesions were randomly divided into two groups using a block randomization procedure. After surgery, 34 patients underwent PEMFs application in the I-ONE group; 34 patients underwent placebo treatment in the placebo group. All patients had the same postoperative rehabilitation protocol. Sixty patients (28 in the I-ONE group, 32 in the placebo group) were assessed at an intermediate follow-up of two years and a minimum follow-up of five years after surgery.

Results

The two groups were homogeneous. There was a significant improvement from baseline to the last minimum follow up of two years. At two years, IKDC and Lysholm and Constant scores were significantly improved compared to baseline in both groups with no significant inter-group differences. At the last follow up (minimum five years), clinical and functional outcomes were decreased in both the groups, with significant better outcomes in the I-ONE group. At five years, the percentage of patients still active at the same level they were pre-operatively was greater in the I-ONE group (82 % vs 68 %, P = 0.28). At radiographic assessment, at the latest evaluation, six patients (21.4 %) in the I-ONE group and nine (28.1 %) in the placebo group demonstrated grade I–II degenerative changes according to Fairbank grading system (Χ = 0.36, P = 0.55).

Conclusions

PEMFs application can improve the effectiveness of microfracture in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG et al (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32:211–215

    Article  PubMed  Google Scholar 

  2. Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42:1795–1801

    Article  PubMed  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  PubMed  Google Scholar 

  4. Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci 3:923–944

    Google Scholar 

  5. Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S et al (2011) Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 39:2549–2557

    Article  PubMed  Google Scholar 

  6. Williams RJ, Harnly HW (2007) Microfracture: indications, technique, and results. Instr Course Lect 56:419–428

    PubMed  Google Scholar 

  7. Osti L, Papalia R, Del Buono A, Amato C, Denaro V, Maffulli N (2010) Good results five years after surgical management of anterior cruciate ligament tears, and meniscal and cartilage injuries. Knee Surg Sports Traumatol Arthrosc 18:1385–1390

    Article  PubMed  Google Scholar 

  8. Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E et al (2012) Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 40:2499–2508

    Article  PubMed  Google Scholar 

  9. Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R et al (2011) Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551

    Article  CAS  PubMed  Google Scholar 

  10. Fini M, Pagani S, Giavaresi G, De Mattei M, Ongaro A, Varani K et al (2013) Functional tissue engineering in articular cartilage repair: is there a role for electromagnetic biophysical stimulation? Tissue Eng B Rev 19:353–367

    Article  CAS  Google Scholar 

  11. Steadman JR, Rodkey WG, Briggs KK (2002) Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg 15:170–176

    PubMed  Google Scholar 

  12. De Mattei M, Fini M, Setti S, Ongaro A, Gemmati D, Stabellini G et al (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr Cartil 15:163–168

    Article  PubMed  Google Scholar 

  13. Zorzi C, Dall’Oca C, Cadossi R, Setti S (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surg Sports Traumatol Arthrosc 15:830–834

    Article  CAS  PubMed  Google Scholar 

  14. Papalia R, Del Buono A, Osti L, Denaro V, Maffulli N (2011) Meniscectomy as a risk factor for knee osteoarthritis: a systematic review. Br Med Bull 99:89–106

    Article  PubMed  Google Scholar 

  15. Frizziero A, Ferrari R, Giannotti E, Ferroni C, Poli P, Masiero S (2012) The meniscus tear. State of the art of rehabilitation protocols related to surgical procedures. Muscles Ligaments Tendons J 2:295–301

    PubMed Central  PubMed  Google Scholar 

  16. de Albornoz PM, Forriol F (2012) The meniscal healing process. Muscles Ligaments Tendons J 2:10–18

    PubMed Central  PubMed  Google Scholar 

  17. Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M (2009) Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 37:33–41

    Article  PubMed  Google Scholar 

  18. Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ (2006) Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 14:834–842

    Article  PubMed  Google Scholar 

  19. Gudas R, Gudaite A, Mickevicius T, Masiulis N, Simonaityte R, Cekanauskas E et al (2013) Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 29:89–97

    Article  PubMed  Google Scholar 

  20. Van Assche D, Van Caspel D, Vanlauwe J, Bellemans J, Saris DB, Luyten FP et al (2009) Physical activity levels after characterized chondrocyte implantation versus microfracture in the knee and the relationship to objective functional outcome with 2-year follow-up. Am J Sports Med 37(Suppl 1):42S–49S

    Article  PubMed  Google Scholar 

  21. Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP et al (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574

    Article  PubMed  Google Scholar 

  22. Mithoefer K, Acuna M (2013) Clinical outcomes assessment for articular cartilage restoration. J Knee Surg 26:31–40

    Article  PubMed  Google Scholar 

  23. Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ (2003) The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 16:83–86

    PubMed  Google Scholar 

  24. Mithoefer K, Williams RJ, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34:1413–1418

    Article  PubMed  Google Scholar 

  25. Mithofer K, Minas T, Peterson L, Yeon H, Micheli LJ (2005) Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 33:1147–1153

    Article  PubMed  Google Scholar 

  26. De Mattei M, Caruso A, Traina GC, Pezzetti F, Baroni T, Sollazzo V (1999) Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20:177–182

    Article  PubMed  Google Scholar 

  27. Fini M, Giavaresi G, Torricelli P, Cavani F, Setti S, Cane V et al (2005) Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig. J Orthop Res 23:899–908

    Article  CAS  PubMed  Google Scholar 

  28. Stumpfe ST, Pester JK, Steinert S, Marintschev I, Plettenberg H, Aurich M, Hofmann G (2013) Is there a correlation between biophotonical, biochemical, histological, and visual changes in the cartilage of osteoarthritic knee-joints? Muscles Ligaments Tendons J 3:157–165

    PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors disclose they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Maffulli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osti, L., Del Buono, A. & Maffulli, N. Application of pulsed electromagnetic fields after microfractures to the knee: a mid-term study. International Orthopaedics (SICOT) 39, 1289–1294 (2015). https://doi.org/10.1007/s00264-014-2627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2627-0

Keywords

Navigation