Skip to main content

Advertisement

Log in

Hypoxia and HIF-1α in osteoarthritis

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

We have previously shown that functional inactivation of hypoxia-inducible factor-1α (HIF-1α) in growth-plate chondrocytes will dramatically inhibit anaerobic energy generation and matrix synthesis. Using immunohistochemistry, we have now analyzed the spatial distribution of HIF-1α and its target genes in normal cartilage and in cartilage from knee joints with osteoarthritis. We detected HIF-1α and its target genes in both types of cartilage. In cartilage from joints with osteoarthritis, the number of HIF-1α-, Glut-1-, and PGK-1-stained chondrocytes increased with the severity of osteoarthritis. Activated matrix synthesis and strongly decreased oxygen levels are hallmarks of osteoarthritic cartilage. Thus, we assume that chondrocytes are depending on the adaptive functions of HIF-1α in order to maintain ATP levels and thereby matrix synthesis during the course of osteoarthritis.

Résumé

Nous avons montré précédemment que l’inactivation du facteur de l’hypoxie 1-α (HIF-1α) dans les chondrocytes du cartilage de conjugaison inhibe très nettement la génération d’énergie anaérobie et la synthèse de la matrice. Utilisant l’immuno-histochimie nous avons analysé la distribution spatiale de HIF-1, et ses gène- cibles dans le cartilage normal et dans le cartilage d’articulations avec arthrose. Nous avons détecté des HIF-1α et ses gène-cibles dans les deux types de cartilage. Dans le cartilage arthrosique le nombre de chondrocytes marqués HIF-1α, Glut-1 et PGK-1 a augmenté avec la sévérité de l’arthrose. La synthèse de la matrice activée et le niveau d’oxygène fortement diminué sont des caractéristiques du cartilage arthrosique. Donc nous supposons que les chondrocytes dépendent de la fonction adaptative de HIF-1 pour maintenir le niveau d’ATP et de cette façon la synthèse de la matrice pendant l’évolution de l’arthrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aigner T, Zien A, Gehrsitz A, Gebhard PM, McKenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using DNA-array technology. Arthritis Rheum 44:2777–2789

    CAS  PubMed  Google Scholar 

  2. Chang H, Shyu KG, Wang BW, Kuan P (2003) Regulation of hypoxia-inducible factor-1alpha by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci (Lond) 105:447–456

    CAS  Google Scholar 

  3. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    CAS  PubMed  Google Scholar 

  4. Dumond H, Presle N, Terlain B et al (2003) Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 48:3118–3129

    CAS  PubMed  Google Scholar 

  5. Grosfeld A, Andre J, Hauguel-De Mouzon S, Berra E, Pouyssegur J, Guerre-Millo M (2002) Hypoxia-inducible factor 1 transactivates the human leptin gene promoter. J Biol Chem 8:42953–42957

    Article  Google Scholar 

  6. Grosfeld A, Zilberfarb V, Turban S, Andre J, Guerre-Millo M, Issad T (2002) Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologica 45:527–530

    CAS  Google Scholar 

  7. Hashimoto S, Takahashi K, Amiel D, Coutts RD, Lotz M (1998) Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis. Arthritis Rheum 41:1266–1274

    CAS  PubMed  Google Scholar 

  8. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    CAS  PubMed  Google Scholar 

  9. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117

    CAS  PubMed  Google Scholar 

  10. Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13:769–776

    CAS  PubMed  Google Scholar 

  11. Mankin H, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537

    CAS  PubMed  Google Scholar 

  12. Olney RC, Tsuchiya K, Wilson DM et al (1996) Chondrocytes from osteoarthritic cartilage have increased expression of insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and -5, but not IGF-II or IGFBP-4. J Clin Endocrinol Metab 81:1096–1103

    Google Scholar 

  13. Pfander D, Cramer T, Deuerling D, Weseloh G, Swoboda B (2000) Expression of thrombospondin-1 and its receptor CD36 in human osteoarthritic cartilage. Ann Rheum Dis 59:448–454

    CAS  PubMed  Google Scholar 

  14. Pfander D, Cramer T, Schipani E, Johnson RS (2003) HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes. J Cell Sci 116:1819–1826

    CAS  PubMed  Google Scholar 

  15. Pfander D, Kobayashi T, Knight M et al (2004) Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix synthesis during growth plate development. Development 131:2497–2508

    CAS  PubMed  Google Scholar 

  16. Pfander D, Kortje D, Zimmermann R et al (2001) Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis 60:1070–1073

    Article  CAS  PubMed  Google Scholar 

  17. Pfander D, Swoboda B, Kirsch T (2001) Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 159:1777–1783

    CAS  PubMed  Google Scholar 

  18. Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44:1082–1088

    Article  CAS  PubMed  Google Scholar 

  19. Pullig O, Weseloh G, Gauer S, Swoboda B (2000) Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage. Matrix Biol 19:245–255

    CAS  PubMed  Google Scholar 

  20. Richardson S, Neama G, Philipps T et al (2003) Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-desoxyglucose uptake by IGF-1 and elevated MMP-2 secretion by glucose deprivation. Osteoarthr Cartil 11:92–101

    CAS  PubMed  Google Scholar 

  21. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865–2876

    CAS  PubMed  Google Scholar 

  22. Schneider U, Miltner O, Thomsen M, Graf J, Niethard F (1996) Intraartikuläre Sauerstoffpartialdruckmesung unter funtionellen Bedingungen. Z Orthop 134:422–425

    CAS  PubMed  Google Scholar 

  23. Semenza GL (2001) Hif-1, o(2), and the 3 phds. how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    Article  CAS  PubMed  Google Scholar 

  24. Semenza G, Wang G (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoitein gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    Google Scholar 

  25. Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond B Biol Sci 271:261–272

    CAS  PubMed  Google Scholar 

  26. Stokes DG, Liu G, Coimbra IB, Piera-Velazquez S, Crowl RM, Jimenez SA (2002) Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum 46:404–419

    CAS  PubMed  Google Scholar 

  27. Studer R, Jaffurs D, Stefanovic-Racic M, Robbins PD, Evans CH (1999) Nitric oxide in osteoarthritis. Osteoarthr Cartil 7:377–379

    CAS  PubMed  Google Scholar 

  28. Swoboda B, Pullig O, Kirsch T, Kladny B, Steinhäuser B, Weseloh G (1998) Increased content of type VI collagen epitopes in human osteoarthritic cartilage. Quantitation by inhibition-ELISA. J Orthoptera Res 16:96–99

    CAS  Google Scholar 

  29. Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908

    CAS  PubMed  Google Scholar 

  30. Von der Mark K, Kirsch T, Nerlich A et al (1992) Type X collagen synthesis in human osteoarthritic cartilage. Arthritis Rheum 35:806–811

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Research (IZKF-Erlangen, D5) and by a grant from the Deutsche Forschungsgemeinschaft (PF 383/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pfander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfander, D., Cramer, T. & Swoboda, B. Hypoxia and HIF-1α in osteoarthritis. International Orthopaedics (SICOT) 29, 6–9 (2005). https://doi.org/10.1007/s00264-004-0618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-004-0618-2

Keywords

Navigation