Skip to main content

Advertisement

Log in

Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Peritoneal metastasis is a distinct pathologic characteristic of advanced epithelial ovarian cancer (EOC), which is the most deadly disease of the female reproductive tract. The inflammatory environment of the peritoneum in EOC contains abundant macrophages, activated thrombin, and thrombin-associated receptors. However, little is known about the mechanism by which the thrombin–macrophages interaction contributes to tumor invasion and metastasis. We investigated the phenotype and cytokine/chemokine expression of thrombin-treated peripheral blood monocytes (MOs)/macrophages, it was found that the phenotype of MOs was altered toward a TAM-like macrophage CD163highIL-10highCCL18highIL-8high after thrombin stimulation. By Matrigel invasion assay, the conditioned medium of thrombin-stimulated MOs accelerated remarkable invasion of ES-2, SKOV3, and HO-8910, which was similar to invasive cell numbers of ascites stimuli (P < 0.05) and higher than MOs medium alone (P < 0.05). IL-8 was proposed as the major chemoattractant mediating EOC invasion based on MOs mRNA and protein expression profiling. It was observed that anti IL-8 monoclonal neutralizing antibody attenuated EOC cell invasion in a concentration-dependent manner. Increased transcriptional activation of NF-κB p50/p65 was identified in thrombin-treated MOs. This study provided insight the role of thrombin in the regulation of EOC peritoneal invasion via “educating” MOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. Freedman RS, Deavers M, Liu J et al (2004) Peritoneal inflammation—a microenvironment for epithelial ovarian cancer (EOC). J Transl Med 2:23

    Article  PubMed  Google Scholar 

  3. Wang E, Ngalame Y, Panelli MC et al (2005) Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res 11:113–122

    CAS  PubMed  Google Scholar 

  4. Wang X, Deavers M, Patenia R et al (2006) Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. J Transl Med 4:30

    Article  PubMed  Google Scholar 

  5. Varki A (2007) Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 110:1723–1729

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Wang E, Kavanagh JJ et al (2005) Ovarian cancer, the coagulation pathway, and inflammation. J Transl Med 3:25

    Article  CAS  PubMed  Google Scholar 

  7. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  CAS  PubMed  Google Scholar 

  8. Negus RP, Stamp GW, Relf MG et al (1995) The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Investig 95:2391–2396

    Article  CAS  PubMed  Google Scholar 

  9. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  10. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  11. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  CAS  PubMed  Google Scholar 

  12. Denholm EM, Wolber FM, Phan SH (1989) Secretion of monocyte chemotactic activity by alveolar macrophages. Am J Pathol 135:571–580

    CAS  PubMed  Google Scholar 

  13. Zain J, Huang YQ, Feng X et al (2000) Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells. Blood 95:3133–3138

    CAS  PubMed  Google Scholar 

  14. Bizios R, Lai L, Fenton JW 2nd et al (1987) Thrombin-induced thromboxane generation by neutrophils and lymphocytes: dependence on enzymic site. J Cell Physiol 132:359–362

    Article  CAS  PubMed  Google Scholar 

  15. Muftuoglu TM, Koksal N, Ozkutlu D (2000) Evaluation of phagocytic function of macrophages in rats after partial splenectomy. J Am Coll Surg 191:668–671

    Article  CAS  PubMed  Google Scholar 

  16. Chu Q, Ling MT, Feng H et al (2006) A novel anticancer effect of garlic derivatives: inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis 27:2180–2189

    Article  CAS  PubMed  Google Scholar 

  17. Duluc D, Delneste Y, Tan F et al (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110:4319–4330

    Article  CAS  PubMed  Google Scholar 

  18. Graves LE, Ariztia EV, Navari JR et al (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64:7045–7049

    Article  CAS  PubMed  Google Scholar 

  19. Martinez FO, Sica A, Mantovani A et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  20. Allavena P, Sica A, Solinas G et al (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  21. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  Google Scholar 

  22. Freedman RS, Ma Q, Wang E et al (2008) Migration deficit in monocyte-macrophages in human ovarian cancer. Cancer Immunol Immunother 57:635–645

    Article  CAS  PubMed  Google Scholar 

  23. Hagemann T, Wilson J, Burke F et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032

    CAS  PubMed  Google Scholar 

  24. Tiemessen MM, Jagger AL, Evans HG et al (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 104:19446–19451

    Article  CAS  PubMed  Google Scholar 

  25. Traynelis SF, Trejo J (2007) Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol 14:230–235

    Article  CAS  PubMed  Google Scholar 

  26. Mohle R, Green D, Moore MA et al (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 94:663–668

    Article  CAS  PubMed  Google Scholar 

  27. Hu L, Lee M, Campbell W et al (2004) Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 104:2746–2751

    Article  CAS  PubMed  Google Scholar 

  28. Gratchev A, Kzhyshkowska J, Kothe K et al (2006) Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology 211:473–486

    Article  CAS  PubMed  Google Scholar 

  29. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160

    Article  CAS  PubMed  Google Scholar 

  30. Buechler C, Ritter M, Orso E et al (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67:97–103

    CAS  PubMed  Google Scholar 

  31. Schutyser E, Struyf S, Proost P et al (2002) Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem 277:24584–24593

    Article  CAS  PubMed  Google Scholar 

  32. Schutyser E, Richmond A, Van Damme J (2005) Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol 78:14–26

    Article  CAS  PubMed  Google Scholar 

  33. Gawrychowski K, Skopinska-Rozewska E, Barcz E et al (1998) Angiogenic activity and interleukin-8 content of human ovarian cancer ascites. Eur J Gynaecol Oncol 19:262–264

    CAS  PubMed  Google Scholar 

  34. Zhou HY, Pon YL, Wong AS (2007) Synergistic effects of epidermal growth factor and hepatocyte growth factor on human ovarian cancer cell invasion and migration: role of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Endocrinology 148:5195–5208

    Article  CAS  PubMed  Google Scholar 

  35. So J, Navari J, Wang FQ et al (2004) Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8. Gynecol Oncol 95:314–322

    Article  CAS  PubMed  Google Scholar 

  36. So J, Wang FQ, Navari J et al (2005) LPA-induced epithelial ovarian cancer (EOC) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF-R2). Gynecol Oncol 97:870–878

    CAS  PubMed  Google Scholar 

  37. Devine KM, Smicun Y, Hope JM et al (2008) S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecol Oncol 110:237–245

    Article  CAS  PubMed  Google Scholar 

  38. Robinson-Smith TM, Isaacsohn I, Mercer CA et al (2007) Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 67:5708–5716

    Article  CAS  PubMed  Google Scholar 

  39. Marin V, Farnarier C, Gres S et al (2001) The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood 98:667–673

    Article  CAS  PubMed  Google Scholar 

  40. Li QJ, Yang SH, Maeda Y et al (2003) MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J 22:281–291

    Article  CAS  PubMed  Google Scholar 

  41. Lin CH, Cheng HW, Hsu MJ et al (2006) c-Src mediates thrombin-induced NF-kappaB activation and IL-8/CXCL8 expression in lung epithelial cells. J Immunol 177:3427–3438

    CAS  PubMed  Google Scholar 

  42. Zheng L, Martins-Green M (2007) Molecular mechanisms of thrombin-induced interleukin-8 (IL-8/CXCL8) expression in THP-1-derived and primary human macrophages. J Leukoc Biol 82:619–629

    Article  CAS  PubMed  Google Scholar 

  43. Hagemann T, Lawrence T, McNeish I et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268

    Article  CAS  PubMed  Google Scholar 

  44. Fong CH, Bebien M, Didierlaurent A et al (2008) An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. J Exp Med 205:1269–1276

    Article  CAS  PubMed  Google Scholar 

  45. Ringe J, Strassburg S, Neumann K et al (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 101:135–146

    Article  CAS  PubMed  Google Scholar 

  46. Tranquilli AL, Landi B, Corradetti A et al (2007) Inflammatory cytokines patterns in the placenta of pregnancies complicated by HELLP (hemolysis, elevated liver enzyme, and low platelet) syndrome. Cytokine 40:82–88

    Article  CAS  PubMed  Google Scholar 

  47. Conte E, Modica A, Cacopardo B et al (2005) Ribavirin up-regulates IL-12 p40 gene expression and restores IL-12 levels in Leishmania-treated PBMCs. Parasite Immunol 27:447–451

    Article  CAS  PubMed  Google Scholar 

  48. Zhao J, Wu XY (2008) Triggering of toll-like receptors 2 and 4 by Aspergillus fumigatus conidia in immortalized human corneal epithelial cells to induce inflammatory cytokines. Chin Med J (Engl) 121:450–454

    CAS  Google Scholar 

  49. Farkas L, Hahn MC, Schmoczer M et al (2005) Expression of CXC chemokine receptors 1 and 2 in human bronchial epithelial cells. Chest 128:3724–3734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the assistance of Professor Peihua Lu, who kindly provided lab instruments to support this study. This study was supported by the grants from National Science Foundation of China (30600672) and Shanghai Qimingxing Star Project (06QH14010).

Conflict of interest statement

All authors are aware of and agree to the content of the paper and to being listed as an author on the paper. All authors declare that there is no conflict of interest including employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Li or Xipeng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2.52 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Ma, Z., Wang, R. et al. Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol Immunother 59, 1097–1108 (2010). https://doi.org/10.1007/s00262-010-0836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0836-y

Keywords

Navigation