Skip to main content
Log in

Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

CT angiography (CTA) can rule out significant stenoses with a very high reliability, whereas its ability to confirm significant stenoses is suboptimal. In contrast, measurements of myocardial blood flow (MBF) provide information on the haemodynamic consequences of stenoses. Therefore, a combination of the two might improve diagnostic accuracy. We conducted a head-to-head comparison of CTA, measurement of MBF by 15O-water PET, and hybrid PET/CTA for the detection of significant coronary artery stenoses.

Methods

The study group comprised 44 outpatients scheduled for invasive coronary angiography (ICA) with an intermediate pretest likelihood of coronary artery disease. The patients underwent 64-slice CTA and baseline and hyperaemic PET before ICA with quantitative coronary angiography analysis.

Results

On a per-patient basis, the negative predictive values (NPV; 95 % confidence intervals in parentheses) were 88 % (64 – 97 %) for CTA, 90 % (71 – 97%) for PET and 92 % (74 – 98%) for PET/CTA, and the positive predictive values (PPV) were 71 % (53 – 85%) for CTA, 87 % (68 – 95%) for PET and 100 % (84 – 100%) for PET/CTA. Similarly, on a per-vessel basis the NPVs (which were generally high) were 97 % (94 – 100%) for CTA, 95 % (90 – 99%) for PET and 97 % (95 – 100%) for PET/CTA, and the PPVs (which were lower, but higher with PET/CTA) were 53 % (39 – 66%) for CTA, 53 % (40 – 66%) for PET and 85 % (73 – 97%) for PET/CTA. In six patients, CTA analysis was hampered by the presence of severe calcifications. However, with the addition of the PET data, all six patients were correctly categorized.

Conclusion

Cardiac quantitative hybrid PET/CTA imaging has better diagnostic accuracy than CTA alone and PET alone. CTA has a suboptimal PPV, suggesting that hybrid PET/CTA imaging should be used to assess the significance of coronary stenoses diagnosed by CTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meijboom WB, van Mieghem CA, Mollet NR, Pugliese F, Weustink AC, van Pelt N, et al. 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007;50:1469–75.

    Article  PubMed  Google Scholar 

  2. Schroeder S, Achenbach S, Bengel F, Burgstahler C, Cademartiri F, de Feyter P, et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J. 2008;29:531–56.

    Article  PubMed  Google Scholar 

  3. von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med. 2011;154:413–20.

    Article  Google Scholar 

  4. Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008;94:1386–93.

    Article  PubMed  CAS  Google Scholar 

  5. Hamon M, Morello R, Riddell JW. Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography – meta-analysis. Radiology. 2007;245:720–31.

    Article  PubMed  Google Scholar 

  6. Sun Z, Jiang W. Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. Eur J Radiol. 2006;60:279–86.

    Article  PubMed  Google Scholar 

  7. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J. 2007;28:3042–50.

    Article  PubMed  Google Scholar 

  8. Sant’Anna FM, da Silva ER, Batista LA, Brito MB, Ventura FM, Ferraz HA, et al. What is the angiography error when defining myocardial ischemia during percutaneous coronary interventions? Arq Bras Cardiol. 2008;91:162–7, 79–84.

    PubMed  Google Scholar 

  9. Gaemperli O, Schepis T, Koepfli P, Valenta I, Soyka J, Leschka S, et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2007;34:1162–71.

    Article  PubMed  Google Scholar 

  10. Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52:636–43.

    Article  PubMed  Google Scholar 

  11. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–84.

    Article  PubMed  Google Scholar 

  12. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol. 2008;15:444–51.

    Article  PubMed  Google Scholar 

  13. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300:1350–8.

    Article  PubMed  CAS  Google Scholar 

  14. Diederichsen AC, Petersen H, Jensen LO, Thayssen P, Gerke O, Sandgaard NC, et al. Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium. Scand Cardiovasc J. 2009;43:337–44.

    Article  PubMed  CAS  Google Scholar 

  15. Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, et al. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol. 2011;58:2533–40.

    Article  PubMed  Google Scholar 

  16. Nesterov SV, Han C, Maki M, Kajander S, Naum AG, Helenius H, et al. Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging. 2009;36:1594–602.

    Article  PubMed  Google Scholar 

  17. Javadi MS, Lautamaki R, Merrill J, Voicu C, Epley W, McBride G, et al. Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med. 2010;51:198–203.

    Article  PubMed  Google Scholar 

  18. Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  PubMed  CAS  Google Scholar 

  19. Miller DP. Bootstrap 101: Obtain robust confidence intervals for any statistic. Proceedings of the Twenty-Ninth Annual SAS Users Group International Conference. Cary, NC: SAS Institute; 2004, paper 193-29.

  20. Coffin M, Sukhatme S. Receiver operating characteristic studies and measurement errors. Biometrics. 1997;53:823–37.

    Article  PubMed  CAS  Google Scholar 

  21. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88:62–9.

    Article  PubMed  CAS  Google Scholar 

  22. Uren NG, Camici PG, Melin JA, Bol A, de Bruyne B, Radvan J, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med. 1995;36:2032–6.

    PubMed  CAS  Google Scholar 

  23. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587–92.

    Article  PubMed  CAS  Google Scholar 

  24. Danad I, Raijmakers PG, Appelman YE, Harms HJ, de Haan S, van den Oever ML, et al. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med. 2013;54:55–63.

    Article  PubMed  CAS  Google Scholar 

  25. Danad I, Raijmakers PG, Appelman YE, Harms HJ, de Haan S, van den Oever ML, et al. Coronary risk factors and myocardial blood flow in patients evaluated for coronary artery disease: a quantitative [15O]H2O PET/CT study. Eur J Nucl Med Mol Imaging. 2012;39:102–12.

    Article  PubMed  Google Scholar 

  26. Tsukamoto T, Morita K, Naya M, Katoh C, Inubushi M, Kuge Y, et al. Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2006;33:1150–6.

    Article  PubMed  Google Scholar 

  27. Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP. 1998;28:1–126.

    Google Scholar 

  28. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.

    Article  PubMed  CAS  Google Scholar 

  29. Johansen A, Hoilund-Carlsen PF, Christensen HW, Vach W, Jorgensen HB, Veje A, et al. Diagnostic accuracy of myocardial perfusion imaging in a study population without post-test referral bias. J Nucl Cardiol. 2005;12:530–7.

    Article  PubMed  Google Scholar 

  30. Hoilund-Carlsen PF, Johansen A, Vach W, Christensen HW, Moldrup M, Haghfelt T. High probability of disease in angina pectoris patients: is clinical estimation reliable? Can J Cardiol. 2007;23:641–7.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Thomassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomassen, A., Petersen, H., Diederichsen, A.C.P. et al. Hybrid CT angiography and quantitative 15O-water PET for assessment of coronary artery disease: comparison with quantitative coronary angiography. Eur J Nucl Med Mol Imaging 40, 1894–1904 (2013). https://doi.org/10.1007/s00259-013-2519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2519-3

Keywords

Navigation