Skip to main content
Log in

Image-derived input functions for PET brain studies

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To assess the robustness of a previously introduced method to obtain accurate image-derived input functions (IDIF) for three other tracers.

Methods

Dynamic PET and online blood data of five repeat [11C]PIB (Pittsburgh Compound-B) ([11C]PIB), six repeat (R)-[11C]verapamil, and ten single (R)-[11C]PK11195 studies were used. IDIFs were extracted from partial volume corrected scans using the four hottest pixels per plane method. Results obtained with IDIFs were compared with those using standard online measured arterial input functions (BSIF). IDIFs were used both with and without calibration based on manual blood samples.

Results

For (R)-[11C]verapamil, accurate IDIFs were obtained using noncalibrated IDIFs (slope 0.96±0.17; R 2 0.92±0.07). However, calibration was necessary to obtain IDIFs comparable to the BSIF for both [11C]PIB (slope 1.04±0.05; R 2 1.00±0.01) and (R)-[11C]PK11195 (slope 0.96±0.05; R 2 0.99±0.01). The need for calibration may be explained by the sticking property of both tracers, indicating that BSIF may be affected by sticking and therefore may be unreliable.

Conclusion

The present study shows that a previously proposed method to extract IDIFs is suitable for analysing [11C]PIB, (R)-[11C]verapamil and (R)-[11C]PK11195 studies, thereby obviating the need for online arterial sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.

    Article  PubMed  CAS  Google Scholar 

  2. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996;16:42–52.

    Article  PubMed  CAS  Google Scholar 

  3. Hall R. Vascular injuries resulting from arterial puncture of catheterization. Br J Surg 1971;58:513–6.

    Article  PubMed  CAS  Google Scholar 

  4. Machleder HI, Sweeney JP, Barker WF. Pulseless arm after brachial-artery catheterisation. Lancet 1972;1:407–9.

    Article  PubMed  CAS  Google Scholar 

  5. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 1998;18:716–23.

    Article  PubMed  CAS  Google Scholar 

  6. Mourik JEM, Lubberink M, Klumpers UMH, Lammertsma AA, Boellaard R. Partial volume corrected image derived input functions for dynamic brain studies: methodology and validation for [11C]flumazenil. Neuroimage 2008;39:1041–50.

    Article  PubMed  Google Scholar 

  7. Mourik JE, van Velden FH, Lubberink M, Kloet RW, Berckel BN, Lammertsma AA, et al. Image derived input functions for dynamic high resolution research tomograph PET brain studies. Neuroimage 2008;43:676–86.

    Article  PubMed  Google Scholar 

  8. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005;25:1528–47.

    Article  PubMed  CAS  Google Scholar 

  9. Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, et al. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 2002;12:535–41.

    Article  PubMed  CAS  Google Scholar 

  10. Toornvliet R, van Berckel BN, Luurtsema G, Lubberink M, Geldof AA, Bosch TM, et al. Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin Pharmacol Ther 2006;79:540–8.

    Article  PubMed  CAS  Google Scholar 

  11. Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997;26:77–82.

    Article  PubMed  CAS  Google Scholar 

  12. Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001;28:81–9.

    Article  PubMed  CAS  Google Scholar 

  13. Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med 1989;30:1069–78.

    PubMed  CAS  Google Scholar 

  14. Lubberink M, Greuter HNJM, Boellaard R, Luurtsema G, Lammertsma AA. Effect of plasma metabolite correction accuracy on kinetic analysis in positron emission tomography. Neuroimage. 2004;22:T119.

    Google Scholar 

  15. Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 1998;8:426–40.

    Article  PubMed  CAS  Google Scholar 

  16. Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000;27:661–70.

    Article  PubMed  CAS  Google Scholar 

  17. Schuitemaker A, van Berckel BN, Kropholler MA, Kloet RW, Jonker C, Scheltens P, et al. Evaluation of methods for generating parametric (R)-[11C]PK11195 binding images. J Cereb Blood Flow Metab 2007;27:1603–15.

    Article  PubMed  CAS  Google Scholar 

  18. Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet R, Windhorst AD, et al. Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J Cereb Blood Flow Metab 2007;27:424–33.

    Article  PubMed  CAS  Google Scholar 

  19. Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol 2005;7:273–85.

    Article  PubMed  Google Scholar 

  20. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6:279–87.

    Article  PubMed  CAS  Google Scholar 

  21. Baudrexel S, Graf R, Knoess C, Vollmar S, Wienhard K. Derivation of the input function from dynamic PET images with the HRRT. Nuclear Science Symposium Conference Record 2004;6:3890–92.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Netherlands Organisation for Scientific Research (NWO, VIDI Grant 016.066.309), the American Health Assistance Foundation (Grant A2005-026) and Internationale Stichting Alzheimer Research (Grant #05512). The authors would like to thank Floris H.P. van Velden for his useful comments and the PET radiochemistry and technology staff of the Division of Nuclear Medicine and PET Research for production of isotopes and acquisition of metabolites and PET data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurgen E. M. Mourik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourik, J.E.M., Lubberink, M., Schuitemaker, A. et al. Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging 36, 463–471 (2009). https://doi.org/10.1007/s00259-008-0986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0986-8

Keywords

Navigation