Skip to main content

Advertisement

Log in

Review article: the differential diagnosis of bone marrow edema on wrist MRI

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

There is a large variety of conditions that can result in ‘bone marrow edema’ or ‘bone marrow lesions’ (BML) in the wrist on magnetic resonance imaging (MRI). The combination of clinical history and the distribution of the BML can serve as a valuable clue to a specific diagnosis. This article illustrates the different patterns of BML in the wrist to serve as a useful guide when reviewing wrist MRI studies. Imaging artefacts will also be briefly covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Alam F, Schweitzer ME, Li XX, Malat J, Hussain SM. Frequency and spectrum of abnormalities in the bone marrow of the wrist: MR imaging findings. Skelet Radiol. 1999;28(6):312–7.

    Article  CAS  Google Scholar 

  2. Manara M, Varenna M. A clinical overview of bone marrow oedema. Reumatismo. 2014;66(2):184–96.

    Article  CAS  Google Scholar 

  3. Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow oedema? Radiology. 1988;167(3):757–60.

    Article  CAS  Google Scholar 

  4. O’Hare A, Shortt C, Napier N, Eustace SJ. Bone marrow edema: patterns and clinical implications. Semin Musculoskelet Radiol. 2006;10(4):249–57.

    Article  Google Scholar 

  5. Janowski J, Coady C, Catalano LW 3rd. Scaphoid fractures: nonunion and malunion. J Hand Surg Am. 2016;41(11):1087–92. https://doi.org/10.1016/j.jhsa.2016.08.019.

    Article  PubMed  Google Scholar 

  6. Klifto CS, Ramme AJ, Sapienza A, Paksima N. Scaphoid nonunions. Bull Hosp Jt Dis (2013). 2018;76(1):27–32.

    Google Scholar 

  7. Danger F, Wasyliw C, Varich L. Osteochondroses. Semin Musculoskelet Radiol. 2018;22(1):118–24. https://doi.org/10.1055/s-0038-1627094.

    Article  PubMed  Google Scholar 

  8. Murthy NS. The role of magnetic resonance imaging in scaphoid fractures. J Hand Surg Am. 2013;38(10):2047–54. https://doi.org/10.1016/j.jhsa.2013.03.055.

    Article  PubMed  Google Scholar 

  9. Bervian MR, Ribak S, Livani B. Scaphoid fracture nonunion: correlation of radiographic imaging, proximal fragment histologic viability evaluation and estimation of viability at surgery: diagnosis of scaphoid pseudarthrosis. Int Orthop. 2015;39(1):67–72.

    Article  Google Scholar 

  10. Fox MG, Gaskin CM, Chhabra AB, Anderson MW. Assessment of scaphoid viability with MRI: a reassessment of findings on unenhanced MR images. AJR Am J Roentgenol. 2010;195(4):W281–6. https://doi.org/10.2214/AJR.09.4098.

    Article  PubMed  Google Scholar 

  11. Kalainov DM, Cohen MS, Hendrix RW, Sweet S, Culp RW, Osterman AL. Preiser's disease: identification of two patterns. J Hand Surg Am. 2003;28(5):767–78.

    Article  Google Scholar 

  12. Schmitt R, Fröhner S, van Schoonhoven J, Lanz U, Gölles A. Idiopathic osteonecrosis of the scaphoid (Preiser's disease)—MRI gives new insights into etiology and pathology. Eur J Radiol. 2011;77(2):228–34. https://doi.org/10.1016/j.ejrad.2010.11.009.

    Article  CAS  PubMed  Google Scholar 

  13. Tomori Y, Motoda N, Ohashi R, Sawaizumi T, Nanno M, Takai S. Preiser disease after repeated local glucocorticoid injections: a case report. Medicine (Baltimore). 2018;97(38):e12413. https://doi.org/10.1097/MD.0000000000012413.

    Article  Google Scholar 

  14. Fontaine C. Kienböck's disease. Chir Main. 2015;34(1):4–17. https://doi.org/10.1016/j.main.2014.10.149.

    Article  CAS  PubMed  Google Scholar 

  15. Nealey EM, Petscavage-Thomas JM, Chew FS, Allan CH, Ha AS. Radiologic guide to surgical treatment of Kienbock's disease. Curr Probl Diagn Radiol. 2018;47(2):103–9. https://doi.org/10.1067/j.cpradiol.2017.04.012.

    Article  PubMed  Google Scholar 

  16. Arnaiz J, Piedra T, Cerezai L, et al. Imaging of Kienbock disease. Am J Roentgenol. 2014;203:131–9.

    Article  Google Scholar 

  17. Peters SJ, Degreef I, De Smet L. Avascular necrosis of the capitate: report of six cases and review of the literature. J Hand Surg Eur Vol. 2015;40(5):520–5. https://doi.org/10.1177/1753193414524876.

    Article  CAS  PubMed  Google Scholar 

  18. Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol. 2008;49(7):771–86.

    Article  CAS  Google Scholar 

  19. Honda H, McDonald JR. Current recommendations in the management of osteomyelitis of the hand and wrist. J Hand Surg Am. 2009;34(6):1135–6.

    Article  Google Scholar 

  20. Hsu CY, Lu HC, Shih TT. Tuberculous infection of the wrist: MRI features. AJR Am J Roentgenol. 2004;183(3):623–8.

    Article  Google Scholar 

  21. Murthy NS, Ringler MD. MR imaging of carpal fractures. Magn Reson Imaging Clin N Am. 2015;23(3):405–16. https://doi.org/10.1016/j.mric.2015.04.006.

    Article  PubMed  Google Scholar 

  22. Mallee WH, Wang J, Poolman RW, et al. Computed tomography versus MRI versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs. Cochrane Database Syst Rev. 2015;6:CD010023.

    Google Scholar 

  23. Cockenpot E, Lefebvre G, Demondion X, Chantelot C, Cotten A. Imaging of sports-related hand and wrist injuries: sports imaging series. Radiology. 2016;279(3):674–92. https://doi.org/10.1148/radiol.2016150995.

    Article  PubMed  Google Scholar 

  24. Tibrewal S, Jayakumar P, Vaidya S, Ang SC. Role of MRI in the diagnosis and management of patients with clinical scaphoid fracture. Int Orthop. 2012;36(1):107–10. https://doi.org/10.1007/s00264-011-1350-3.

    Article  PubMed  Google Scholar 

  25. Thavarajah D, Syed T, Shah Y, Wetherill M. Does scaphoid bone bruising lead to occult fracture? A prospective study of 50 patients. Injury. 2011;42:1303–6. https://doi.org/10.1016/j.injury.2011.02.020.

    Article  PubMed  Google Scholar 

  26. Mandegaran R, Gidwani S, Zavareh A. Concomitant hook of hamate fractures in patients with scaphoid fracture: more common than you might think. Skelet Radiol. 2018;47(4):505–10.

    Article  Google Scholar 

  27. Becce F, Theumann N, Bollmann C, et al. Dorsal fractures of the triquetrum: MRI findings with an emphasis on dorsal carpal ligament injuries. AJR Am J Roentgenol. 2013;200(3):608–17. https://doi.org/10.2214/AJR.12.8736.

    Article  PubMed  Google Scholar 

  28. Van Demark RE, Van Demark RE, Helsper E. Stress fracture of the hook of the hamate: a case report. S D Med. 2015;68(4):161.

    Google Scholar 

  29. Bancroft LW. Wrist injuries: a comparison between high- and low-impact sports. Radiol Clin N Am. 2013;51(2):299–311. https://doi.org/10.1016/j.rcl.2012.09.017.

    Article  PubMed  Google Scholar 

  30. Dwek JR, Cardoso F, Chung CB. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist. Pediatr Radiol. 2009;39(12):1310–6.

    Article  Google Scholar 

  31. Maquirriain J, Ghisi JP. Stress injury of the lunate in tennis players: a case series and related biomechanical considerations. Br J Sports Med. 2007;41(11):812–5.

    Article  Google Scholar 

  32. Krestan CR, Nemec U, Nemec S. Imaging of insufficiency fractures. Semin Musculoskelet Radiol. 2011;15(3):198–207.

    Article  Google Scholar 

  33. Brown RR, Fliszar E, Cotten A, Trudell D, Resnick D. Extrinsic and intrinsic ligaments of the wrist: normal and pathologic anatomy at MR arthrography with three compartmental enhancement. Radiographics. 1998;18:667–74.

    Article  CAS  Google Scholar 

  34. Bateni CP, Bartolotta RJ, Richardson ML, Mulcahy H, Allan CH. Imaging key wrist ligaments: what the surgeon needs the radiologist to know. AJR Am J Roentgenol. 2013;200(5):1089–95.

    Article  Google Scholar 

  35. Strauch RJ. Scapholunate advanced collapse and scaphoid nonunion advanced collapse arthritis—update on evaluation and treatment. J Hand Surg Am. 2011;36(4):729–35. https://doi.org/10.1016/j.jhsa.2011.01.018.

    Article  PubMed  Google Scholar 

  36. Tischler BT, Diaz LE, Murakami AM, et al. Scapholunate advanced collapse: a pictorial review. Insights Imaging. 2014;5(4):407–17. https://doi.org/10.1007/s13244-014-0337-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taneja AK, Bredella MA, Chang CY, Joseph Simeone F, Kattapuram SV, Torriani M. Extrinsic wrist ligaments: prevalence of injury by magnetic resonance imaging and association with intrinsic ligament tears. J Comput Assist Tomogr. 2013;37(5):783–9. https://doi.org/10.1097/RCT.0b013e318298aa2a.

    Article  PubMed  Google Scholar 

  38. DaSilva MF, Goodman AD, Gil JA, Akelman E. Evaluation of ulnar-sided wrist pain. J Am Acad Orthop Surg. 2017;25(8):e150–6. https://doi.org/10.5435/JAAOS-D-16-00407.

    Article  PubMed  Google Scholar 

  39. Ersoy H, Pomeranz SJ. Palmer classification and magnetic resonance imaging findings of ulnocarpal impingement. J Surg Orthop Adv. 2015;24(4):257–62.

    PubMed  Google Scholar 

  40. Cerezal L, del Piñal F, Abascal F, García-Valtuille R, Pereda T, Canga A. Imaging findings in ulnar-sided wrist impaction syndromes. Radiographics. 2002;22(1):105–21.

    Article  Google Scholar 

  41. Reijnierse M, Helm-Mil AV, Eshed I, Schueller-Weidekamm C. Magnetic resonance imaging of rheumatoid arthritis: peripheral joints and spine. Semin Musculoskelet Radiol. 2018;22(2):127–46. https://doi.org/10.1055/s-0038-1639474.

    Article  PubMed  Google Scholar 

  42. Chen B, Zhang L, Guo W. Metacarpophalangeal and wrist MRI bone marrow oedema can reflect the disease activity of rheumatoid arthritis and correlate with SDAI, CDAI and DAS28. Biomed Res. 2016;27(3):616–22.

    Google Scholar 

  43. Woodworth TG, Morgacheva O, Pimienta OL, Troum OM, Ranganath VK, Furst DE. Examining the validity of the rheumatoid arthritis MRI score according to the OMERACT filter—a systematic literature review. Rheumatology (Oxford). 2017;56(7):1177–88.

    Article  Google Scholar 

  44. Li X, Yu A, Virayavanich W, Noworolski SM, Link TM, Imboden J. Quantitative characterization of bone marrow edema pattern in rheumatoid arthritis using 3 Tesla MRI. J Magn Reson Imaging. 2012;35(1):211–7.

    Article  CAS  Google Scholar 

  45. Nieuwenhuis WP, van Steenbergen HW, Stomp W, et al. The course of bone marrow edema in early undifferentiated arthritis and rheumatoid arthritis: a longitudinal magnetic resonance imaging study at bone level. Arthritis Rheumatol. 2016;68(5):1080–8.

    PubMed  Google Scholar 

  46. Fujimori M, Nakamura S, Hasegawa K, et al. Cartilage quantification using contrast-enhanced MRI in the wrist of rheumatoid arthritis: cartilage loss is associated with bone marrow edema. Br J Radiol. 2017;90(1077):20170167. https://doi.org/10.1259/bjr.20170167.

    Article  PubMed  PubMed Central  Google Scholar 

  47. McQueen F, Lassere M, Edmonds J, Conaghan P, Peterfy C, Bird P, et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Summary of OMERACT 6 MR imaging module. J Rheumatol. 2003;30(6):1387–92.

    PubMed  Google Scholar 

  48. Narváez J, Narváez JA, de Albert M, Gómez-Vaquero C, Nolla JM. Can MRI of the hand and wrist differentiate between rheumatoid arthritis and psoriatic arthritis in the early stages of the disease? Semin Arthritis Rheum. 2012;42(3):234–45.

    Article  Google Scholar 

  49. Tani C, D'Aniello D, Possemato N, et al. MRI pattern of arthritis in systemic lupus erythematosus: a comparative study with rheumatoid arthritis and healthy subjects. Skelet Radiol. 2015;44(2):261–6.

    Article  Google Scholar 

  50. Barnes CL, Helms CA. MRI of gout: a pictorial review. Int J Clin Rheumatol. 2012;7(3):281–5.

    Article  CAS  Google Scholar 

  51. Emad Y, Ragab Y, El-Naggar A, et al. Gadolinium-enhanced MRI features of acute gouty arthritis on top of chronic gouty involvement in different joints. Clin Rheumatol. 2015;34(11):1939–47.

    Article  Google Scholar 

  52. Poh YJ, Dalbeth N, Doyle A, McQueen FM. Magnetic resonance imaging bone edema is not a major feature of gout unless there is concomitant osteomyelitis: 10-year findings from a high-prevalence population. J Rheumatol. 2011;38(11):2475–81.

    Article  Google Scholar 

  53. Tomlinson RE, Silva MJ. Skeletal blood flow in bone repair and maintenance. Bone Research. 2013;4:311–22.

    Article  Google Scholar 

  54. Murray PM, Berger RA, Inwards CY. Primary neoplasms of the carpal bones. J Hand Surg Am. 1999;24(5):1008–13.

    Article  CAS  Google Scholar 

  55. Jafari D, Shariatzade H, Mazhar FN, Abbasgholizadeh B, Dashtebozorgh A. Osteoid osteoma of the hand and wrist: a report of 25 cases. Med J Islam Repub Iran. 2013;27(2):62–6.

    PubMed  PubMed Central  Google Scholar 

  56. Kaim AH, Hugli R, Bonel HM, Jundt G. Chondroblastoma and clear cell chondrosarcoma: radiological and MRI characteristics with histopathological correlation. Skelet Radiol. 2002;31(2):88–95.

    Article  Google Scholar 

  57. Davila JA, Amrami KK, Sundaram M, Adkins MC, Unni KK. Chondroblastoma of the hands and feet. Skelet Radiol. 2004;33(10):582–7.

    Article  Google Scholar 

  58. Schurmann M, Zaspel J, Lohr P, et al. Imaging in early post-traumatic complex regional pain syndrome: a comparison of diagnostic methods. Clin J Pain. 2007;23(5):449–57.

    Article  Google Scholar 

  59. de Abreu MR, Wesselly M, Chung CB, Resnick D. Bone marrow MR imaging findings in disuse osteoporosis. Skelet Radiol. 2011;40(5):571–5. https://doi.org/10.1007/s00256-010-1042-x.

    Article  Google Scholar 

  60. Rios AM, Rosenberg ZS, Bencardino JT, Rodrigo SP, Theran SG. Bone marrow oedema patterns in the ankle and hindfoot: distinguishing MRI features. Am J Roentgenol. 2011;197:W720–9. https://doi.org/10.2214/AJR.10.5880.

    Article  Google Scholar 

  61. Feydy A, Pluot E, Guerini H, Drapé JL. Osteoarthritis of the wrist and hand, and spine. Radiol Clin N Am. 2009;47(4):723–59. https://doi.org/10.1016/j.rcl.2009.06.004.

    Article  PubMed  Google Scholar 

  62. Laulan J, Marteau E, Bacle G. Wrist osteoarthritis. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S1–9. https://doi.org/10.1016/j.otsr.2014.06.025.

    Article  CAS  PubMed  Google Scholar 

  63. Wollstein R, Clavijo J, Gilula LA. Osteoarthritis of the wrist STT joint and radiocarpal joint. Arthritis. 2012;2012:242159. https://doi.org/10.1155/2012/242159.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthr Cartil. 2006;14(10):1081–5.

    Article  CAS  Google Scholar 

  65. Gornitzky AL, Lin IC, Carrigan RB. The diagnostic utility and clinical implications of wrist MRI in the pediatric population. Hand (N Y). 2018;13(2):143–9. https://doi.org/10.1177/1558944717695752.

    Article  Google Scholar 

  66. Taylor KW, Moore MM, Brian J, Methratta S, Bernard S. Wrist MR imaging in children: effect on clinical diagnosis and management. Clin Imaging. 2017;44:61–5. https://doi.org/10.1016/j.clinimag.2017.04.001.

    Article  PubMed  Google Scholar 

  67. Shabshin N, Schweitzer ME. Age dependent T2 changes of bone marrow in pediatric wrist MRI. Skelet Radiol. 2009;38(12):1163–8. https://doi.org/10.1007/s00256-009-0752-4.

    Article  Google Scholar 

  68. Avenarius DFM, Ording Müller LS, Rosendahl K. Joint fluid, bone marrow edema like changes, and ganglion cysts in the pediatric wrist: features that may mimic pathologic abnormalities-follow-up of a healthy cohort. Am J Roentgenol. 2017;208(6):1352–7.

    Article  Google Scholar 

  69. Tanturri de Horatio L, Damasio MB, Barbuti D, et al. MRI assessment of bone marrow in children with juvenile idiopathic arthritis: intra- and inter-observer variability. Pediatr Radiol. 2012;42(6):714–20.

    Article  Google Scholar 

  70. Nusman CM, Lavini C, Hemke R, et al. Dynamic contrast-enhanced magnetic resonance imaging of the wrist in children with juvenile idiopathic arthritis. Pediatr Radiol. 2017;47(2):205–13. https://doi.org/10.1007/s00247-016-3736-2.

    Article  PubMed  Google Scholar 

  71. Rieter JF, de Horatio LT, Nusman CM, et al. The many shades of enhancement: timing of post-gadolinium images strongly influences the scoring of juvenile idiopathic arthritis wrist involvement on MRI. Pediatr Radiol. 2016;46(11):1562–7. https://doi.org/10.1007/s00247-016-3657-0.

    Article  PubMed  Google Scholar 

  72. Nusman CM, Ording Muller LS, Hemke R, et al. Current status of efforts on standardizing magnetic resonance imaging of juvenile idiopathic arthritis: report from the OMERACT MRI in JIA working group and health-e-child. J Rheumatol. 2016;43(1):239–44. https://doi.org/10.3899/jrheum.141276.

    Article  PubMed  Google Scholar 

  73. Lee EY, Sundel RP, Kim S, Zurakowski D, Kleinman PK. MRI findings of juvenile psoriatic arthritis. Skelet Radiol. 2008;37(11):987–96. https://doi.org/10.1007/s00256-008-0537-1.

    Article  Google Scholar 

  74. Eckert K, Tröbs RB, Schweiger B, Liedgens P, Radeloff E, Ackermann O. [Diagnostically approach to pediatric carpal fractures: a retrospective analysis]. [Article in German]. Z Orthop Unfall. 2016;154(1):43–9. https://doi.org/10.1055/s-0035-1558078.

    Article  CAS  PubMed  Google Scholar 

  75. Fitoussi F, Litzelmann E, Ilharreborde B, Morel E, Mazda K, Penneçot GF. Hematogenous osteomyelitis of the wrist in children. J Pediatr Orthop. 2007;27(7):810–3.

    Article  Google Scholar 

  76. Kornaat PR, Camerlinck M, Vanhoenacker FM, De Praeter G, Kroon HM. Brodie's abscess revisited. JBR-BTR. 2010;93(2):81–6.

    CAS  PubMed  Google Scholar 

  77. Resnik CS, Grizzard JD, Simmons BP, Yaghmai I. Incomplete carpal coalition. AJR. 1986;147:301–4.

    Article  CAS  Google Scholar 

  78. Simmons BP, McKenzie WD. Symptomatic carpal coalition. J Hand Surg Am. 1985;10(2):190–3.

    Article  CAS  Google Scholar 

  79. Porrino J, Maloney E, Chew FS. Current concepts of the carpal boss: pathophysiology, symptoms, clinical or imaging diagnosis, and management. Curr Probl Diagn Radiol. 2015;44(5):462–8. https://doi.org/10.1067/j.cpradiol.2015.02.008.

    Article  PubMed  Google Scholar 

  80. Mespreuve M, De Smet L, De Cuyper K, Waked K, Vanhoenacker F. MRI diagnosis of carpal boss and comparison with radiography. Acta Radiol. 2017;58(10):1245–51.

    Article  Google Scholar 

  81. Mangnus L, van Steenbergen HW, Reijnierse M, van der Helm-van Mil AH. Magnetic resonance imaging-detected features of inflammation and erosions in symptom-free persons from the general population. Arthritis Rheumatol. 2016;68(11):2593–602.

    Article  CAS  Google Scholar 

  82. Morelli JN, Runge VM, Attenberger U, et al. An image-based approach to understanding the physics of MR artifacts. Radiographics. 2011;31(3):849–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanYin Lim.

Ethics declarations

Conflict of interest

None.

Consent and ethics

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, W., Saifuddin, A. Review article: the differential diagnosis of bone marrow edema on wrist MRI. Skeletal Radiol 48, 1525–1539 (2019). https://doi.org/10.1007/s00256-019-03204-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-019-03204-1

Keywords

Navigation