Skip to main content
Log in

Features and technical applications of ω-transaminases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chiral amines in enantiopure forms are important chemical building blocks, which are most well recognized in the pharmaceutical industries for imparting desirable biological activity to chemical entities. A number of synthetic strategies to produce chiral amines via biocatalytic as well as chemical transformation have been developed. Recently, ω-transaminase (ω-TA) has attracted growing attention as a promising catalyst which provides an environment-friendly access to production of chiral amines with exquisite stereoselectivity and excellent catalytic turnover. To obtain enantiopure amines using ω-TAs, either kinetic resolution of racemic amines or asymmetric amination of achiral ketones is employed. The latter is usually preferred because of twofold higher yield and no requirement of conversion of a ketone product back to racemic amine. However, the choice of a production process depends on several factors such as reaction equilibrium, substrate reactivity, enzyme inhibition, and commercial availability of substrates. This review summarizes the biochemical features of ω-TA, including reaction chemistry, substrate specificity, and active site structure, and then introduces recent advances in expanding the scope of ω-TA reaction by protein engineering and public database searching. We also address crucial factors to be considered for the development of efficient ω-TA processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Behrens GA, Hummel A, Padhi SK, Schatzle S, Bornscheuer UT (2011) Discovery and protein engineering of biocatalysts for organic synthesis. Adv Synth Catal 353:2191–2215

    Article  CAS  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  • Cassimjee KE, Branneby C, Abedi V, Wells A, Berglund P (2010) Transaminations with isopropyl amine: equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem Commun 46:5569–5571

    Article  CAS  Google Scholar 

  • Cho BK, Park HY, Seo JH, Kim JH, Kang TJ, Lee BS, Kim BG (2008) Redesigning the substrate specificity of ω-aminotransferase for the kinetic resolution of aliphatic chiral amines. Biotechnol Bioeng 99:275–284

    Article  CAS  Google Scholar 

  • Christen P, Metzler DE (1985) Transaminases. John Wiley & Sons, New York

    Google Scholar 

  • Desai AA (2011) Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew Chem Int Ed 50:1974–1976

    Article  CAS  Google Scholar 

  • Fuchs M, Koszelewski D, Tauber K, Kroutil W, Faber K (2010) Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chem Commun 46:5500–5502

    Article  CAS  Google Scholar 

  • Gotor-Fernández V, Gotor V (2009) Biocatalytic routes to chiral amines and amino acids. Curr Opin Drug Disc Dev 12:784–797

    Google Scholar 

  • Hanson RL, Davis BL, Chen Y, Goldberg SL, Parker WL, Tully TP, Montana MA, Patel RN (2008) Preparation of (R)-amines from racemic amines with an (S)-amine transaminase from Bacillus megaterium. Adv Synth Catal 350:1367–1375

    Article  CAS  Google Scholar 

  • Hayashi H, Mizuguchi H, Miyahara I, Nakajima Y, Hirotsu K, Kagmiyama H (2003) Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis. J Biol Chem 278:9481–9488

    Article  CAS  Google Scholar 

  • Hirotsu K, Goto M, Okamoto A, Miyahara I (2005) Dual substrate recognition of aminotransferases. Chem Rec 5:160–172

    Article  CAS  Google Scholar 

  • Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. ChemCatChem 1:42–51

    Article  Google Scholar 

  • Höhne M, Robins K, Bornscheuer UT (2008) A protection strategy substantially enhances rate and enantioselectivity in ω-transaminase-catalyzed kinetic resolutions. Adv Synth Catal 350:807–812

    Article  Google Scholar 

  • Hohne M, Kuhl S, Karen R, Bornscheuer UT (2008) Efficient asymmetric synthesis of chiral amines by combining transaminase and pyruvate decarboxylase. Chembiochem 9:363–365

    Article  Google Scholar 

  • Höhne M, Schätzle S, Jochens H, Robins K, Bornscheuer UT (2010) Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chem Biol 6:807–813

    Article  Google Scholar 

  • Humble MS, Cassimjee KE, Hakansson M, Kimbung YR, Walse B, Abedi V, Federsel HJ, Berglund P, Logan DK (2012) Crystal structures of the Chromobacterium violaceum ω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP. FEBS J 279:779–792

    Article  CAS  Google Scholar 

  • Hwang BY, Ko SH, Park HY, Seo JH, Lee BS, Kim BG (2008) Identification of ω-aminotransferase from Caulobacter crescentus and site-directed mutagenesis to broaden substrate specificity. J Microbiol Biotechnol 18:48–54

    CAS  Google Scholar 

  • Islam MM, Hayashi H, Mizuguchi H, Kagamiyama H (2000) The substrate activation process in the catalytic reaction of Escherichia coli aromatic amino acid aminotransferase. Biochemistry 39:15418–15428

    Article  CAS  Google Scholar 

  • Ismail H, Lau RM, Van Rantwijk F, Sheldon RA (2008) Fully enzymatic resolution of chiral amines: acylation and deacylation in the presence of Candida antarctica lipase B. Adv Synth Catal 350:1511–1516

    Article  CAS  Google Scholar 

  • Ito N, Kawano S, Hasegawa J, Yasohara Y (2011) Purification and characterization of a novel (S)-enantioselective transaminase from Pseudomonas fluorescens KNK08-18 for the synthesis of optically active amines. Biosci Biotechnol Biochem 75:2093–2098

    Article  CAS  Google Scholar 

  • Iwasaki A, Yamada Y, Ikenaka Y, Hasegawa J (2003) Microbial synthesis of (R)- and (S)-3,4-dimethoxyamphetamines through stereoselective transamination. Biotechnol Lett 25:1843–1846

    Article  CAS  Google Scholar 

  • Iwasaki A, Yamada Y, Kizaki N, Ikenaka Y, Hasegawa J (2006) Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp KNK168. Appl Microbiol Biotechnol 69:499–505

    Article  CAS  Google Scholar 

  • Jang TH, Kim B, Park OK, Bae JY, Kim BG, Yun H, Park HH (2010) Crystallization and preliminary X-ray crystallographic studies of omega-transaminase from Vibrio fluvialis JS17. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:923–925

    Article  Google Scholar 

  • Kagamiyama H, Hayashi H (2001) Release of enzyme strain during catalysis reduces the activation energy barrier. Chem Rec 1:385–394

    Article  CAS  Google Scholar 

  • Kaulmann U, Smithies K, Smith MEB, Hailes HC, Ward JM (2007) Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme Microb Technol 41:628–637

    Article  CAS  Google Scholar 

  • Kawaguchi S, Nobe Y, Yasuoka J, Wakamiya T, Kusumoto S, Kuramitsu S (1997) Enzyme flexibility: a new concept in recognition of hydrophobic substrates. J Biochem 122:55–63

    Article  CAS  Google Scholar 

  • Koszelewski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W (2008a) Formal asymmetric biocatalytic reductive amination. Angew Chem Int Ed 47:9337–9340

    Article  CAS  Google Scholar 

  • Koszelewski D, Lavandera I, Clay D, Rozzell D, Kroutil W (2008b) Asymmetric synthesis of optically pure pharmacologically relevant amines employing ω-transaminases. Adv Synth Catal 350:2761–2766

    Article  CAS  Google Scholar 

  • Koszelewski D, Clay D, Rozzell D, Kroutil W (2009a) Deracemisation of α-chiral primary amines by a one-pot, two-step cascade reaction catalysed by ω-transaminases. Eur J Org Chem 14:2289–2292

    Article  Google Scholar 

  • Koszelewski D, Pressnitz D, Clay D, Kroutil W (2009b) Deracemization of mexiletine biocatalyzed by ω-transaminases. Org Lett 11:4810–4812

    Article  CAS  Google Scholar 

  • Koszelewski D, Goritzer M, Clay D, Seisser B, Kroutil W (2010a) Synthesis of optically active amines employing recombinant ω -transaminases in E. coli cells. Chemcatchem 2:73–77

    Article  CAS  Google Scholar 

  • Koszelewski D, Müller N, Schrittwieser JH, Faber K, Kroutil W (2010b) Immobilization of ω-transaminases by encapsulation in a sol–gel/celite matrix. J Mol Catal B: Enzym 63(1–2):39–44

    Article  CAS  Google Scholar 

  • Koszelewski D, Tauber K, Faber K, Kroutil W (2010c) ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol 28:324–332

    Article  CAS  Google Scholar 

  • Koszelewski D, Grischek B, Glueck SM, Kroutil W, Faber K (2011) Enzymatic racemization of amines catalyzed by enantiocomplementary ω-transaminases. Chemistry Eur J 17:378–383

    Article  CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (eds) (2006) Industrial Biotransformation. Second edn. Wiley-VCH Verlag GmbH & Co. KGaA

  • Malashkevich VN, Onuffer JJ, Kirsch JF, Jansonius JN (1995) Alternating arginine-modulated substrate-specificity in an engineered tyrosine aminotransferase. Nature Struct Biol 2:704–704

    Article  CAS  Google Scholar 

  • Matosevic S, Lye GJ, Baganz F (2011) Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols. J Biotechnol 155:320–329

    Article  CAS  Google Scholar 

  • Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561

    Article  CAS  Google Scholar 

  • Mutti FG, Fuchs CS, Pressnitz D, Sattler JH, Kroutil W (2011) Stereoselectivity of four (R)-selective transaminases for the asymmetric amination of ketones. Adv Synth Catal 353:3227–3233

    Article  CAS  Google Scholar 

  • Nugent TC (ed) (2010) Chiral amine synthesis: methods, developments and applications. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/anie.201005727

  • Okamoto A, Ishii S, Hirotsu K, Kagamiyama H (1999) The active site of Paracoccus denitrificans aromatic amino acid aminotransferase has contrary properties: flexibility and rigidity. Biochemistry 38:1176–1184

    Article  CAS  Google Scholar 

  • Park ES, Shin JS (2011) Free energy analysis of ω-transaminase reactions to dissect how the enzyme controls the substrate selectivity. Enzyme Microb Technol 49:380–387

    Article  CAS  Google Scholar 

  • Park ES, Kim M, Shin JS (2011) Molecular determinants for substrate selectivity of ω-transaminases. Appl Microbiol Biotechnol (in press)

  • Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309

    Article  CAS  Google Scholar 

  • Schätzle S, Steffen-Munsberg F, Thontowi A, Höhne M, Robins K, Bornscheuer UT (2011) Enzymatic asymmetric synthesis of enantiomerically pure aliphatic, aromatic and arylaliphatic amines with (R)-selective amine transaminases. Adv Synth Catal 353:2439–2445

    Article  Google Scholar 

  • Shin JS, Kim BG (1997) Kinetic resolution of α-methylbenzylamine with ω-transaminase screened from soil microorganisms: application of a biphasic system to overcome product inhibition. Biotechnol Bioeng 55:348–358

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG (1998) Kinetic modeling of ω-transamination for enzymatic kinetic resolution of α-methylbenzylamine. Biotechnol Bioeng 60:534–540

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG (1999a) Asymmetric synthesis of chiral amines with ω-transaminase. Biotechnol Bioeng 65:206–211

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG (1999b) Modeling of the kinetic resolution of α-methylbenzylamine with ω-transaminase in a two-liquid-phase system. Enzyme Microb Technol 25:426–432

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG (2001) Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines. Biosci Biotechnol Biochem 65:1782–1788

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG (2002) Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: how the enzyme controls substrate specificity and stereo selectivity. J Org Chem 67:2848–2853

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG, Liese A, Wandrey C (2001a) Kinetic resolution of chiral amines with ω-transaminase using an enzyme-membrane reactor. Biotechnol Bioeng 73:179–187

    Article  CAS  Google Scholar 

  • Shin JS, Kim BG, Shin DH (2001b) Kinetic resolution of chiral amines using packed-bed reactor. Enzyme Microb Technol 29:232–239

    Article  CAS  Google Scholar 

  • Shin JS, Yun H, Jang JW, Park I, Kim BG (2003) Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17. Appl Microbiol Biotechnol 61:463–471

    CAS  Google Scholar 

  • Smith MEB, Chen BH, Hibbert EG, Kaulmann U, Smithies K, Galman JL, Baganz F, Dalby PA, Hailes HC, Lye GJ, Ward JM, Woodley JM, Micheletti M (2010) A multidisciplinary approach toward the rapid and preparative-scale biocatalytic synthesis of chiral amino alcohols: a concise transketolase/ω-transaminase-mediated synthesis of (2S,3S)-2-aminopentane-1,3-diol. Org Process Res Dev 14:99–107

    Article  CAS  Google Scholar 

  • Smithies K, Smith MEB, Kaulmann U, Galman JL, Ward JM, Hailes HC (2009) Stereoselectivity of an ω-transaminase-mediated amination of 1,3-dihydroxy-1-phenylpropane-2-one. Tetrahedron-Asymmetry 20:570–574

    Article  CAS  Google Scholar 

  • Stirling DI, Zietlin AL, Matcham GW (1990) Enantiomeric enrichment and stereoselective synthesis of chiral amines. (Celgene Corporation) US patent 4,950,606.

  • Svedendahl M, Branneby C, Lindberg L, Berglund P (2010) Reversed enantiopreference of an ω-transaminase by a single-point mutation. Chemcatchem 2:976–980

    Article  CAS  Google Scholar 

  • Truppo MD, Turner NJ, Rozzell JD (2009) Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase. Chem Commun:2127–2129

  • Truppo MD, David Rozzell J, Turner NJ (2010) Efficient production of enantiomerically pure chiral amines at concentrations of 50 g/L using transaminases. Org Process Res Dev 14:234–237

    Article  CAS  Google Scholar 

  • Tufvesson P, Lima-Ramos J, Jensen JS, Al-Haque N, Neto W, Woodley JM (2011) Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnol Bioeng 108:1479–1493

    Article  CAS  Google Scholar 

  • Turner NJ (2010) Deracemisation methods. Curr Opin Chem Biol 14:115–121

    Article  CAS  Google Scholar 

  • Ward J, Wohlgemuth R (2010) High-yield biocatalytic amination reactions in organic synthesis. Curr Org Chem 14:1914–1927

    Article  CAS  Google Scholar 

  • Watanabe N, Sakabe K, Sakabe N, Higashi T, Sasaki K, Aibara S, Morita Y, Yonaha K, Toyama S, Fukutani H (1989) Crystal structure analysis of ω-amino acid: pyruvate aminotransferase with a newly developed Weissenberg camera and an imaging plate using synchrotron radiation. J Biochem 105:1–3

    CAS  Google Scholar 

  • Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chemistry 13:3007–3047

    Article  CAS  Google Scholar 

  • Yonaha K, Toyama S, Soda K (1987) ω-Amino acid-pyruvate aminotransferase. Methods Enzymol 143:500–504

    Article  CAS  Google Scholar 

  • Yun H, Kim BG (2008) Asymmetric synthesis of (S)-α-methylbenzylamine by recombinant Escherichia coli co-expressing omega-transaminase and acetolactate synthase. Biosci Biotechnol Biochem 72:3030–3033

    Article  CAS  Google Scholar 

  • Yun H, Yang YH, Cho BK, Hwang BY, Kim BG (2003) Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α-methylbenzylamine from racemic α-methylbenzylamine using ω-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction. Biotechnol Lett 25:809–814

    Article  CAS  Google Scholar 

  • Yun H, Cho BK, Kim BG (2004) Kinetic resolution of (R,S)-sec-butylamine using omega-transaminase from Vibrio fluvialis JS17 under reduced pressure. Biotechnol Bioeng 87:772–778

    Article  CAS  Google Scholar 

  • Yun H, Hwang BY, Lee JH, Kim BG (2005) Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl Environ Microb 71:4220–4224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advanced Biomass R&D Center (ABC-2010-0029737) and the Basic Science Research Program (2010–0024448) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. M. Shaheer Malik was partially supported by the Yonsei University Research Fund (2011-7-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shik Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, M.S., Park, ES. & Shin, JS. Features and technical applications of ω-transaminases. Appl Microbiol Biotechnol 94, 1163–1171 (2012). https://doi.org/10.1007/s00253-012-4103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4103-3

Keywords

Navigation