Skip to main content
Log in

Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Much knowledge has been gained for the last 30 years about the effects of pressure on bacteria, and various pressure-based technologies have been designed. The development of modern molecular biology techniques (e.g., DNA microarrays) as well as the technological advances realized in the manufacturing of robust sampling and high-pressure devices has allowed these advances. Not only the direct effects on cell components (membranes, proteins, and nucleic acids) have been unraveled, but also the cellular response to pressure has been investigated by means of transcriptome and proteome analyses. Initially, research was performed by marine biologists who studied the microorganisms living in the deep sea at pressures of 1,000 bar. In parallel, food technologists developed pressure-based methods for inactivating microorganisms without altering the food properties as much as with temperature treatment. The preservation of specific product properties is also the rationale for pressure-based methods for the disinfection of biomaterials and for vaccine production. Therefore, attention was first focused on the “killing” potential of high pressure. On the other hand, there has been a growing interest in using elevated pressures (up to ~10 bar) for enhancing the productivity of bioprocesses. In this case, no killing effect was sought, but pressure was applied to “boost” the process by enhancing the oxygen transfer to the cell culture. This paper gives an overview on the effects of pressures in the range of 1 bar to 10 kbar on bacteria and presents the major and most recent achievements realized in the development of pressure-based biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aertsen A, Michiels CW (2005) Mrr instigates the SOS response after high pressure stress in Escherichia coli. Mol Microbiol 58(5):1381–1391

    Article  CAS  Google Scholar 

  • Aertsen A, Michiels C (2008) Cellular impact of sublethal pressures on Escherichia coli. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington DC, pp 87–100

    Google Scholar 

  • Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW (2004) An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186(18):6133–6141

    Article  CAS  Google Scholar 

  • Aertsen A, Meersman F, Hendrickx MEG, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27(7):434–441

    Article  CAS  Google Scholar 

  • Aguedo M, Gomes N, Garcia E, Waché Y, Mota M, Teixeira JA, Belo I (2005) Decalactone production by Yarrowia lipolytica under increased O2 transfer rates. Biotechnol Lett 27(20):1617–1621

    Article  CAS  Google Scholar 

  • Arana ME, Powell GK, Edwards LL, Kunkel TA, Petrovich RM (2010) Refolding active human DNA polymerase ν from inclusion bodies. Protein Expr Purif 70(2):163–171

    Article  CAS  Google Scholar 

  • Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55(1–3):3–9

    Article  Google Scholar 

  • Balduino K, Spencer P, Malavasi N, Chura-Chambi R, Lemke L, Morganti L (2010) Refolding by high pressure of a toxin containing seven disulfide bonds: bothropstoxin-1 from Bothrops jararacussu. Mol Biotechnol:1-7

  • Balny C, Mozhaev VV, Lange R (1997) Hydrostatic pressure and proteins: basic concepts and new data. Comp Biochem Physiol Physiol 116(4):299–304

    Article  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta-Protein Struct Mol Enzymol 1595(1–2):367–381

    Article  CAS  Google Scholar 

  • Bartlett D, Wright M, Yayanos AA, Silverman M (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342(6249):572–574

    Article  CAS  Google Scholar 

  • Basset J, Lépine P, Chaumont L (1956) Effet des hautes pressions sur le virus de la poliomyélite (souche Lansing). Ann Inst Pasteur (Paris) 90(5):575–593

    CAS  Google Scholar 

  • Belo I, Pinheiro R, Mota M (2003) Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor. Biotechnol Progr 19(2):665–671

    Article  CAS  Google Scholar 

  • Black EP, Stewart CM, Hoover DG (2011) Microbial aspects of high-pressure food processing. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (ed) Nonthermal processing technologies for food, IFT Press and Wiley-Blackwell, pp 51–71.

  • Bowman JP, Bittencourt CR, Ross T (2008) Differential gene expression of Listeria monocytogenes during high hydrostatic pressure processing. Microbiology 154(2):462–475

    Article  CAS  Google Scholar 

  • Brouillet M, Gautier H, Miègeville A-F, Bouler J-M, Merle C, Caillon J (2009) Inactivation of Staphylococcus aureus in calcium phosphate biomaterials via isostatic compression. J Biomed Mater Res B Appl Biomater 91B(1):348–353

    Article  CAS  Google Scholar 

  • Brown P, Meyer R, Cardone F, Pocchiari M (2003) Ultra-high-pressure inactivation of prion infectivity in processed meat: a practical method to prevent human infection. Proc Natl Acad Sci USA 100(10):6093–6097

    Article  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    CAS  Google Scholar 

  • Chilton P, Isaacs NS, Mackey B, Stenning R (1997) The effects of high hydrostatic pressure on bacteria. In: Heremans K (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven, pp 225–228

    Google Scholar 

  • Chura-Chambi RM, Genova LA, Affonso R, Morganti L (2008) Refolding of endostatin from inclusion bodies using high hydrostatic pressure. Anal Biochem 379(1):32–39

    Article  CAS  Google Scholar 

  • Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936

    Article  CAS  Google Scholar 

  • Crisman RL, Randolph TW (2009) Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. Biotechnol Bioeng 102(2):483–492

    Article  CAS  Google Scholar 

  • DeLong E, Yayanos A (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228(4703):1101–1103

    Article  CAS  Google Scholar 

  • Demazeau G, Rivalain N (2011) The development of high hydrostatic pressure processes as an alternative to other pathogen reduction methods. J Appl Microbiol 110(6):1359–1369

    Google Scholar 

  • Diehl P, Schmitt M, Schauwecker J, Eichelberg K, Gollwitzer H, Gradinger R, Goebel M, Preissner KT, Mittelmeier W, Magdolen U (2005) Effect of high hydrostatic pressure on biological properties of extracellular bone matrix proteins. Int J Mol Med 16(2):285–289

    CAS  Google Scholar 

  • Diehl P, Steinhauser E, Gollwitzer H, Heister C, Schauwecker J, Milz S, Mittelmeier W, Schmitt M (2006) Biomechanical and immunohistochemical analysis of high hydrostatic pressure-treated Achilles tendons. J Orthop Sci 11(4):380–385

    Article  Google Scholar 

  • Diehl P, Schauwecker J, Mittelmeier W, Schmitt M (2008) High hydrostatic pressure, a novel approach in orthopedic surgical oncology to disinfect bone, tendons and cartilage. Anticancer Res 28(6B):3877–3883

    Google Scholar 

  • Dixon NM, Kell DB (1989) The inhibition by CO2 of the growth and metabolism of micro-organisms. J Appl Bacteriol 67(2):109–136

    Article  CAS  Google Scholar 

  • Dufresne R, Thibault J, Leduy A, Lencki R (1990) The effects of pressure on the growth of Aureobasidium pullulans and the synthesis of pullulan. Appl Microbiol Biotechnol 32(5):526–532

    Article  CAS  Google Scholar 

  • Eisenmenger MJ, Reyes-De-Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzyme Microb Technol 45(5):331–347

    Article  CAS  Google Scholar 

  • El Moustaine D, Perrier V, Acquatella-Tran Van Ba I, Meersman F, Ostapchenko VG, Baskakov IV, Lange R, Torrent J (2011) Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 286(15):13448–13459

  • Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18(9):413–422

    Article  CAS  Google Scholar 

  • Fernandez Garcia A, Heindl P, Voigt H, Buttner M, Wienhold D, Butz P, Starke J, Tauscher B, Pfaff E (2004) Reduced proteinase K resistance and infectivity of prions after pressure treatment at 60 °C. J Gen Virol 85(1):261–264

    Article  CAS  Google Scholar 

  • Ferreira L, Afonso C, Vila-Real H, Alfaia A, Ribeiro MHL (2008) Evaluation of the effect of high pressure on naringin hydrolysis in grapefruit juice with naringinase immobilised in calcium alginate beads. Food Technol Biotechnol 46(2):146–150

    CAS  Google Scholar 

  • Ferreira E, Mendes YS, Silva JL, Galler R, Oliveira AC, Freire MS, Gaspar LP (2009) Effects of hydrostatic pressure on the stability and thermostability of poliovirus: a new method for vaccine preservation. Vaccine 27(39):5332–5337

    Article  CAS  Google Scholar 

  • Foguel D, Suarez MC, Ferrão-Gonzales AD, Porto TCR, Palmieri L, Einsiedler CM, Andrade LR, Lashuel HA, Lansbury PT, Kelly JW, Silva JL (2003) Dissociation of amyloid fibrils of α-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA 100(17):9831–9836

    Article  CAS  Google Scholar 

  • Follonier S, Henes B, Panke S, Zinn M (2012) Putting cells under pressure: a simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol Bioeng 109(2):451–461

    Article  CAS  Google Scholar 

  • Fradkin AH, Boand CS, Eisenberg SP, Rosendahl MS, Randolph TW (2010) Recombinant murine growth hormone from E. coli inclusion bodies: expression, high-pressure solubilization and refolding, and characterization of activity and structure. Biotechnol Progr 26(3):743–749

    Article  CAS  Google Scholar 

  • Fraga TR, Chura-Chambi RM, Gonçales AP, Morais ZM, Vasconcellos SA, Morganti L, Martins EAL (2010) Refolding of the recombinant protein OmpA70 from Leptospira interrogans from inclusion bodies using high hydrostatic pressure and partial characterization of its immunological properties. J Biotechnol 148(2–3):156–162

    Article  CAS  Google Scholar 

  • Gaspar LP, Mendes YS, Yamamura AMY, Almeida LFC, Caride E, Gonçalves RB, Silva JL, Oliveira AC, Galler R, Freire MS (2008) Pressure-inactivated yellow fever 17DD virus: implications for vaccine development. J Virol Meth 150(1–2):57–62

    Article  CAS  Google Scholar 

  • Gollwitzer H, Mittelmeier W, Brendle M, Weber P, Miethke T, Hofmann GO, Gerdesmeyer L, Schauwecker J, Diehl P (2009) High hydrostatic pressure for disinfection of bone grafts and biomaterials: an experimental study. Open Orthop J 3:1–7

    Article  Google Scholar 

  • Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Eur J Biochem 218(2):463–468

    Article  CAS  Google Scholar 

  • Hauben KJA, Bartlett DH, Soontjens CCF, Cornelis K, Wuytack EY, Michiels CW (1997) Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl Environ Microbiol 63(3):945–950

    CAS  Google Scholar 

  • Hawley SA (1971) Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 10(13):2436–2442

    Article  CAS  Google Scholar 

  • Heinz V, Buckow R (2010) Food preservation by high pressure. J Verbr Lebensm 5(1):73–81

    Article  Google Scholar 

  • Hite BH (1899) The effect of pressure in the preservation of milk. W Va Univ Agr Exp Sta Bull. 58.

  • Huisman O, D’Ari R, Gottesman S (1984) Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc Natl Acad Sci USA 81(14):4490–4494

    Article  CAS  Google Scholar 

  • Ishii A, Oshima T, Sato T, Nakasone K, Mori H, Kato C (2005) Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9(1):65–73

    Article  CAS  Google Scholar 

  • Jia SR, Cui JD (2009) Production of hydrocortisone by Absidia coerulea in moderate pressure bioconversion system. Korean J Chem Eng 26(4):1084–1089

    Article  CAS  Google Scholar 

  • John RJS, Carpenter JF, Randolph TW (2002) High-pressure refolding of disulfide-cross-linked lysozyme aggregates: thermodynamics and optimization. Biotechnol Progr 18(3):565–571

    Article  CAS  Google Scholar 

  • Kawano H, Nakasone K, Matsumoto M, Yoshida Y, Usami R, Kato C, Abe F (2004) Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8(5):367–375

    Article  CAS  Google Scholar 

  • Knabben I, Regestein L, Grumbach C, Steinbusch S, Kunze G, Büchs J (2010a) Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal. J Biotechnol 149(1–2):60–66

    Article  CAS  Google Scholar 

  • Knabben I, Regestein L, Marquering F, Steinbusch S, Lara AR, Büchs J (2010b) High cell-density processes in batch mode of a genetically engineered Escherichia coli strain with minimized overflow metabolism using a pressurized bioreactor. J Biotechnol 150(1):73–79

    Article  CAS  Google Scholar 

  • Knoll A, Maier B, Tscherrig H, Buchs J (2005) The oxygen mass transfer, carbon dioxide inhibition, heat removal, and the energy and cost efficiencies of high pressure fermentation. Adv Biochem Eng Biotechnol 92:77–99

    CAS  Google Scholar 

  • Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stockmann C, Seletzky J, Buchs J (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 132(2):167–179

    Article  CAS  Google Scholar 

  • Lee S-H, Carpenter JF, Chang BS, Randolph TW, Kim Y-S (2006) Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure. Protein Sci 15(2):304–313

    Article  CAS  Google Scholar 

  • Lefebvre BG, Gage MJ, Robinson AS (2004) Maximizing recovery of native protein from aggregates by optimizing pressure treatment. Biotechnol Progr 20(2):623–629

    Article  CAS  Google Scholar 

  • Lopes M, Gomes N, Gonçalves C, Coelho MAZ, Mota M, Belo I (2008) Yarrowia lipolytica lipase production enhanced by increased air pressure. Lett Appl Microbiol 46(2):255–260

    Article  CAS  Google Scholar 

  • Lopes M, Gomes N, Mota M, Belo I (2009) Yarrowia lipolytica growth under increased air pressure: influence on enzyme production. Appl Biochem Biotechnol 159(1):46–53

    Article  CAS  Google Scholar 

  • Ma X, Fan D, L-a S, Cai Q, Chi L, Zhu C, Mi Y, Y-e L (2010) Oxygen transfer rate control in the production of human-like collagen by recombinant Escherichia coli. Biotechnol Appl Biochem 55(4):169–174

    Article  CAS  Google Scholar 

  • Macgregor RBJ (2002) The interactions of nucleic acids at elevated hydrostatic pressure. Biochim Biophys Acta Protein Struct Mol Enzymol 1595(1–2):266–276

    Article  CAS  Google Scholar 

  • Mackey B, Mañas P (2008) Inactivation of Escherichia coli by high pressure. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington DC, pp 53–85

    Google Scholar 

  • Maier B (2002). Auslegung und Betrieb von Rührkesselreaktoren unter erhöhtem Druck. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen.

  • Malavasi NV, Foguel D, Bonafe CFS, Braga CACA, Chura-Chambi RM, Vieira JM, Morganti L (2011) Protein refolding at high pressure: optimization using eGFP as a model. Proc Biochem 46(2):512–518

    Article  CAS  Google Scholar 

  • Malone AS, Chung YK, Yousef AE (2006) Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72(4):2661–2671

    Article  CAS  Google Scholar 

  • Matsui T, Shinzato N, Yokota H, Takahashi J, Sato S (2006) High cell density cultivation of recombinant E. coli with a pressurized culture. Proc. Biochem 41(4):920–924

    CAS  Google Scholar 

  • Meersman F, Heremans K (2008) High hydrostatic pressure effects in the biosphere: from molecules to microbiology. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington DC, pp 1–17

    Google Scholar 

  • Meersman F, Dobson CM, Heremans K (2006) Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev 35(10):908–917

    Article  CAS  Google Scholar 

  • Meganathan R, Marquis RE (1973) Loss of bacterial motility under pressure. Nature 246(5434):525–527

    Article  CAS  Google Scholar 

  • Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Protein Struct Funct Bioinf 24(1):81–91

    Article  CAS  Google Scholar 

  • Mukherjee A, Cao C, Lutkenhaus J (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci USA 95(6):2885–2890

    Article  CAS  Google Scholar 

  • Naal FD, Schauwecker J, Steinhauser E, Milz S, von Knoch F, Mittelmeier W, Diehl P (2008) Biomechanical and immunohistochemical properties of meniscal cartilage after high hydrostatic pressure treatment. J Biomed Mater Res B Appl Biomater 87B(1):19–25

    Article  CAS  Google Scholar 

  • Noger D, Hartmann R, Zinn M (2006) Fermentation von Biopolyester (PHA) im Hochdruck-Bioreaktor. Chem Ing Tech 78(9):1381–1381

    Article  Google Scholar 

  • Oey I, Lille M, Van Loey A, Hendrickx M (2008a) Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends Food Sci Tech 19(6):320–328

    Article  CAS  Google Scholar 

  • Oey I, Van der Plancken I, Van Loey A, Hendrickx M (2008b) Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci Tech 19(6):300–308

    Article  CAS  Google Scholar 

  • Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161(10):799–809

    Article  Google Scholar 

  • Pagán R, Mackey B (2000) Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol 66(7):2829–2834

    Article  Google Scholar 

  • Pinheiro R, Belo I, Mota M (2000) Air pressure effects on biomass yield of two different Kluyveromyces strains. Enzym Microb Tech 26(9–10):756–762

    Article  CAS  Google Scholar 

  • Qoronfleh MW, Hesterberg LK, Seefeldt MB (2007) Confronting high-throughput protein refolding using high pressure and solution screens. Protein Expr Purif 55(2):209–224

    Article  CAS  Google Scholar 

  • Qureshi MH, Kato C, Horikoshi K (1998a) Purification of a ccb-type quinol oxidase specifically induced in a deep-sea barophilic bacterium, Shewanella sp. strain DB-172 F. Extremophiles 2(2):93–99

    Article  CAS  Google Scholar 

  • Qureshi MH, Kato C, Horikoshi K (1998b) Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium, Shewanella sp. strain DB-172 F. FEMS Microbiol Lett 161(2):301–309

    Article  CAS  Google Scholar 

  • Rivalain N, Roquain J, Demazeau G (2010) Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 28(6):659–672

    Article  CAS  Google Scholar 

  • Robey M, Benito A, Hutson RH, Pascual C, Park SF, Mackey BM (2001) Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl Environ Microbiol 67(10):4901–4907

    Article  CAS  Google Scholar 

  • Roger H (1895) Action des hautes pressions sur quelques bactéries. Arch Physiol Norm Path 7:12–17

    Google Scholar 

  • Sancho F, Lambert Y, Demazeau G, Largeteau A, Bouvier J-M, Narbonne J-F (1999) Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. J Food Eng 39(3):247–253

    Article  Google Scholar 

  • Schauwecker J, Von Eisenhart-Rothe R, Burgkart R, Tuebel J, Schmitt M, Mittelmeier W, Diehl P (2011) Revitalization of human bone after extracorporeal high hydrostatic pressure treatment. Anticancer Res 31(4):1235–1239

    Google Scholar 

  • Schmid A, Kollmer A, Mathys RG, Witholt B (1998) Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles 2(3):249–256

    Article  CAS  Google Scholar 

  • Schmid A, Kollmer A, Sonnleitner B, Witholt B (1999) Development of equipment and procedures for the safe operation of aerobic bacterial bioprocesses in the presence of bulk amounts of flammable organic solvents. Bioprocess Eng 20(2):91–100

    Article  CAS  Google Scholar 

  • Schoner BE, Bramlett KS, Guo H, Burris TP (2005) Reconstitution of functional nuclear receptor proteins using high pressure refolding. Mol Genet Metab 85(4):318–322

    Article  CAS  Google Scholar 

  • Schulz E, Lüdemann HD, Jaenicke R (1976) High pressure equilibrium studies on the dissociation-association of E. coli ribosomes. FEBS Lett 64(1):40–43

    Article  CAS  Google Scholar 

  • Schumpe A, Quicker G, Deckwer W-D (1982) Gas solubilities in microbial culture media. Heidelberg, Springer Berlin, pp 1–38

    Google Scholar 

  • Seefeldt MB, Ouyang J, Froland WA, Carpenter JF, Randolph TW (2004) High-pressure refolding of bikunin: efficacy and thermodynamics. Protein Sci 13(10):2639–2650

    Article  CAS  Google Scholar 

  • Seefeldt MB, Crouch C, Kendrick B, Randolph TW (2007) Specific volume and adiabatic compressibility measurements of native and aggregated recombinant human interleukin-1 receptor antagonist: density differences enable pressure-modulated refolding. Biotechnol Bioeng 98(2):476–485

    Article  CAS  Google Scholar 

  • Shearer AEH, Kniel KE (2009) High hydrostatic pressure for development of vaccines. J Food Protect 72(7):1500–1508

    CAS  Google Scholar 

  • Shearer AEH, Wilkins GC, Jenkins MC, Kniel KE (2007) Effects of high hydrostatic pressure on Eimeria acervulina pathogenicity, immunogenicity and structural integrity. Innovat Food Sci Emerg Tech 8(2):259–268

    Article  CAS  Google Scholar 

  • Sila DN, Smout C, Satara Y, Truong V, Loey AV, Hendrickx M (2007) Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity. J Food Eng 78(3):755–764

    Article  CAS  Google Scholar 

  • Silva JL, Weber G (1993) Pressure stability of proteins. Annu Rev Phys Chem 44(1):89–113

    Article  CAS  Google Scholar 

  • Silva CCM, Giongo V, Simpson AJG, Camargos ERdS, Silva JL, Koury MC (2001) Effects of hydrostatic pressure on the Leptospira interrogans: high immunogenicity of the pressure-inactivated serovar hardjo. Vaccine 19(11–12):1511–1514

    Article  CAS  Google Scholar 

  • Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta Protein Struct Mol Enzymol 1595(1–2):11–29

    Article  CAS  Google Scholar 

  • St. John RJ, Carpenter JF, Randolph TW (1999) High pressure fosters protein refolding from aggregates at high concentrations. Proc Natl Acad Sci USA 96(23):13029–13033

    Article  Google Scholar 

  • St. John RJ, Carpenter JF, Balny C, Randolph TW (2001) High pressure refolding of recombinant human growth hormone from insoluble aggregates. J Biol Chem 276(50):46856–46863

    Article  CAS  Google Scholar 

  • Stretton S, Goodman AE (1998) Carbon dioxide as a regulator of gene expression in microorganisms. Antonie Leeuwenhoek 73(1):79–85

    Article  CAS  Google Scholar 

  • Stretton S, Marshall KC, Dawes IW, Goodman AE (1996) Characterisation of carbon dioxide-inducible genes of the marine bacterium, Pseudomonas sp. S91. FEMS Microbiol Lett 140(1):37–42

    Article  CAS  Google Scholar 

  • Suzuki K (1960) Studies on the kinetics of protein denaturation under high pressure. Rev Phys Chem Jpn 29(2):91–98

    CAS  Google Scholar 

  • Tedjo W, Eshtiaghi MN, Knorr D (2000) Impact of supercritical carbon dioxide and high pressure on lipoxygenase and peroxidase activity. J Food Sci 65(8):1284–1287

    Article  CAS  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. Bioessays 20(1):49–57

    Article  CAS  Google Scholar 

  • Tonello C (2011) Case studies on high-pressure processing of foods. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (ed) Nonthermal processing technologies for food, IFT Press and Wiley-Blackwell, pp 36-50.

  • Torrent J, Alvarez-Martinez MT, Heitz F, Liautard J-P, Balny C, Lange R (2003) Alternative prion structural changes revealed by high pressure. Biochemistry 42(5):1318–1325

    Article  CAS  Google Scholar 

  • Torrent J, Balny C, Lange R (2006) High pressure modulates amyloid formation. Protein Pep Lett 13:271–277

    Article  CAS  Google Scholar 

  • Weiss EM, Meister S, Janko C, Ebel N, Schlücker E, Meyer-Pittroff R, Fietkau R, Herrmann M, Gaipl US, Frey B (2010) High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J Immunot 7(3):194–204

    Article  CAS  Google Scholar 

  • Welch T, Bartlett D (1996) Isolation and characterization of the structural gene for OmpL, a pressure-regulated porin-like protein from the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 178(16):5027–5031

    CAS  Google Scholar 

  • Welch TJ, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress-response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175(22):7170–7177

    CAS  Google Scholar 

  • Yaldagard M, Mortazavi SA, Tabatabaei F (2008) The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. Afr J Biotechnol 7(16):2739–2767

    CAS  Google Scholar 

  • Yamamoto S, Mikami N, Matsuno M, Hara T, Odani S, Suzuki A, Nishiumi T (2010) Effects of a high-pressure treatment on bovine gamma globulin and its reduction in allergenicity. Biosci Biotechnol Biochem 74(3):525–530

    Article  CAS  Google Scholar 

  • Yang J-D, Wang NS (1992) Oxygen mass transfer enhancement via fermentor headspace pressurization. Biotechnol Prog 8:244–251

    Article  CAS  Google Scholar 

  • Yayanos AA, Pollard EC (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9(12):1464–1482

    Article  CAS  Google Scholar 

  • Zeece M, Huppertz T, Kelly A (2008) Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innovat Food Sci Emerg Tech 9(1):62–69

    Article  CAS  Google Scholar 

  • Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (2011) Nonthermal processing for food IFT Press and Wiley-Blackwell.

  • ZoBell CE, Cobet AB (1964) Filament formation by Escherichia coli at increased hydrostatic pressures. J Bacteriol 87(3):710–719

    CAS  Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57(2):179–189

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNF), grant 315200-116812/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Zinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follonier, S., Panke, S. & Zinn, M. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Appl Microbiol Biotechnol 93, 1805–1815 (2012). https://doi.org/10.1007/s00253-011-3854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3854-6

Keywords

Navigation