Skip to main content
Log in

Aspartic proteinases from Mucor spp. in cheese manufacturing

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Filamentous fungi belonging to the order of Mucorales are well known as producers of aspartic proteinases depicting milk-clotting activity. The biosynthesis level, the biochemical characteristics, and the technological properties of the resulting proteinases are affected by the producer strain and the mode of cultivation. While the milk-clotting enzymes produced by the Rhizomucor spp. have been extensively studied in the past, much less is known on the properties and potential applications of the aspartic proteinases obtained for Mucor spp. Indeed, several Mucor spp. strains have been reported as a potential source of milk-clotting enzymes having unique technological properties. Both submerged fermentation and solid substrate cultivation are proven alternatives for the production of Mucor spp. aspartic proteinases. This review provides an overview on the bioprocessing routes to obtain large amounts of these enzymes, on their structural characteristics as related to their functional properties, and on their industrial applications with focus on cheese manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas CA, Bao WL (2009) Increased fiber hydrolysis by protease addition. US Patent 0098638 A1

  • Aguilar CF, Cronin NB, Badasso M, Dreyer T, Newman MP, Cooper JB, Hoover DJ, Wood SP, Johnson MS, Blundell T (1997) The three-dimensional structure at 2.4 Å resolution of glycosylated proteinase A from the lysosome-like vacuole of Saccharomyces cerevisiae. J Mol Biol 267:899–915

    Article  CAS  Google Scholar 

  • Alves MH, de Campos-Takaki GM, Okada K, Ferreira Pessoa IH, Milanez AI (2005) Detection of extracellular protease in Mucor species. Rev Iberoam Micol 22:114–117

    Article  Google Scholar 

  • Andrade VS, Sarubbo LA, Fukushima K, Miyaji M, Nishimura K, de Campos-Takaki GM (2002) Production of extracellular proteases by Mucor circinelloides using d-glucose as carbon source. Braz J Microbiol 33:106–110

    Article  CAS  Google Scholar 

  • Andreeva NS, Rumsh LD (2001) Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci 10:2439–2450

    Article  CAS  Google Scholar 

  • Areces LB, Bonino MB, Parry MA, Fraile ER, Fernandez-Lahore HM, Cascone O (1992) Purification and characterization of a milk-clotting protease from Mucor bacilliformis. Appl Biochem Biotechnol 37:283–294

    Article  CAS  Google Scholar 

  • Ashie INA, Sorensen TL, Nielsen PM (2002) Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J Food Sci 67:2138–2142

    Article  CAS  Google Scholar 

  • Belyauskaite IP, Palubinskas VJ, Anchenko OE, Vesa VS, Glemzha AA (1980) Purification and some properties of the extracellular aspartic proteinase from Mucor renninus. Enzyme Microb Technol 2:37–44

    Article  Google Scholar 

  • Bernardinelli SE, Bottaro Castilla HR, Waehner RS, Muse J, Fraile ER (1983) Production and milk clotting enzymes. Rev Argent Microbiol 15:95–104

    CAS  Google Scholar 

  • Beyenal LH, Seker S, Salih B, Tanyolac A (1999) The effect of d-glucose on milk clotting activity of Mucor miehei in a chemostat with biomass retention. J Chem Technol Biotechnol 74:527–532

    Article  CAS  Google Scholar 

  • Boer CG, Peralta RM (1999) Production of extracellular protease by Aspergillus tamari. J Basic Microbiol 40:75–81

    Article  Google Scholar 

  • Claverie-Martin F, Vega-Hernandez MC (2007) Aspartic proteases in cheese making. In: Polaina J, Maccabe AP (eds) Industrial enzymes. Springer, Netherlands, pp 207–219

    Chapter  Google Scholar 

  • Davies DR (1990) The structure and function of aspartic proteases. Annu Rev Biophys Biomol Struct 19:189–215

    Article  CAS  Google Scholar 

  • De Lima CJB, Cortezi M, Lovaglio RB, Ribeiro EJ, Contiero J, De Araújo EH (2008) Production of rennet in submerged fermentation with the filamentous fungus Mucor miehei NRRL 3420. World App Sci J 4:578–585

    Google Scholar 

  • Diaz S, Ruiz Herrera J (1987) Purification of an aspartic proteinase from Mucor rouxii that inactivates chitin synthetase. Antonie Leeuwenhoek 53:279–291

    Article  CAS  Google Scholar 

  • Escobar J, Barnett SM (1993) Effect of agitation on the synthesis of Mucor miehei aspartic proteinase. Enzyme Microb Technol 15:1009–1013

    Article  CAS  Google Scholar 

  • Etoh Y, Shoun H, Beppu T, Arima K (1979) Physicochemical and immunochemical studies on similarities of acid proteases Mucor pusillus rennin and Mucor miehei rennin. Agri Biol Chem 43:209–215

    CAS  Google Scholar 

  • Fernandez-Lahore HM, Miranda MV, Fraile ER, de Jiménes B, Bonino MJ, Cascone O (1995) Partition behavior and purification of a Mucor bacilliformis aspartic proteinase in aqueous two-phase systems. Process Biochem 30:615–621

    Article  Google Scholar 

  • Fernandez-Lahore HM, Fraile ER, Cascone O (1998) Aspartic proteinase recovery from solid state fermentation system. J Biotechnol 62:83–93

    Article  CAS  Google Scholar 

  • Fernandez-Lahore HM, Gallego Duaigues MV, Cascone O, Fraile ER (1997) Solid state production of a Mucor bacilliformis aspartic proteinase. Rev Argent Microbiol 29:1–6

    CAS  Google Scholar 

  • Fernandez-Lahore HM, Auday RM, Fraile ER, Biscoglio De Jimenes Bonino M, Pirpignan L, Machalinski C, Cascone O (1999) Purification and characterization of an aspartic proteinase from mesophilic Mucor sp. solid-state cultures. J Pept Res 53:599–605

    Article  CAS  Google Scholar 

  • Filippova IY, Lysogorskaia EN (2003) Modified proteinases in peptide synthesis in organic media. Russ J Bioorgan Chem 29:544–550

    Google Scholar 

  • Fraile ER, Bernardinelli SE, Handel M, Jauregui AM (1978) Selección de cepas de Mucor sp productoras de enzimas coagulantes de leche. Rev Argent Microbiol 10:65–69

    CAS  Google Scholar 

  • Fraile ER, Muse JO, Bernardinelli SE (1981) Milk-clotting enzyme from Mucor bacilliformis. Eur J Appl Microbiol Biotechnol 13:191–193

    Article  CAS  Google Scholar 

  • Handel M, Fraile ER (1984) Production of milk-clotting enzymes by aerated submerged culture of the strain of Mucor mucedo. Acta Cient Venez 35:111–115

    CAS  Google Scholar 

  • Hashimoto H, Iwaasa T, Yokotsuka T (1973) Some properties of acid protease from the thermophilic fungus, Penicillium duponti K1014. Appl Microbiol 5:578–583

    Google Scholar 

  • Higashio K, Yoshioka Y (1982) Milk clotting enzyme production by N.T.G. induced mutant of Mucor racemosus no. 50. J Agri Chem Soc Jpn 56:777–785

    CAS  Google Scholar 

  • Hustedt H, Kroner KH, Kula MR (1985) Application of phase partitioning in biotechnology. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in aqueous two-phase systems, theory, methods, uses, and applications to biotechnology. Academic, Florida, pp 529–584

    Google Scholar 

  • Kanlayakrit W, Maweang M (2006) Production of seasoning “Mirin” from Thai rice by fermentation. Kasetsart J 40:39–46

    CAS  Google Scholar 

  • Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736

    Article  CAS  Google Scholar 

  • Kumar PKR, Losanse BK (1987) Extraction of gibberellic acid from dry moldy bran produced under solid-state fermentation. Process Biochem 22:139–143

    CAS  Google Scholar 

  • Kumar S, Sharma NS, Saharan MR, Singh R (2005) Extracellular aspartic proteinases from Rhizopus oryzae: purification and characterization. Process Biochem 40:1701–1705

    Article  CAS  Google Scholar 

  • Lareo C, Sposito AF, Bossio AL, Volpe DC (2006) Characterization of growth and sporulation of Mucor bacilliformis in solid state fermentation on an inert support. Enzyme Microb Technol 38:391–399

    Article  CAS  Google Scholar 

  • Machalinski C, Pirpignani ML, Marino C, Mantegazza A, de Jiménez Bonino MB (2006) Structural aspect of Mucor bacilliformis proteinase, a new member of the aspartyl-proteinase family. J Biotechnol 123:443–452

    Article  CAS  Google Scholar 

  • Mitchell DA, Von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and interparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  CAS  Google Scholar 

  • Neelakantan S, Mohanty AK, Kaushik JK (1999) Production and use of microbial enzymes for dairy processing. Curr Sci 77:43–148

    Google Scholar 

  • Nielsen PK, Foltmann H (1995) Purification and characterization of porcine pepsinogen B and pepsin. Arch Biochem Biophys 322:417–422

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vadenberghe LPS, Mohan R (2000) Biotechnological potential of agro-industrial residues: II cassava bagasse. Bioresour Technol 74:81–87

    Article  CAS  Google Scholar 

  • Phelan M, Aherne A, FitzGerald RJ, O’Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643–654

    Article  CAS  Google Scholar 

  • Preetha S, Boopathy R (1994) Influence of culture conditions on the production of milk clotting enzyme from Rhizomucor. World J Microbiol Biotechnol 10:527–530

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  Google Scholar 

  • Sardinas JL (1968) Rennin enzyme of Endothia parasitica. Appl Microbiol 16:248–255

    CAS  Google Scholar 

  • Sathya R, Pradeep BV, Angayarkanni J, Palaniswamy M (2009) Production of milk clotting protease by a local isolate of Mucor circinelloides under SSF using agro-industrial wastes. Biotechnol Bioprocess Eng 14:788–794

    Article  CAS  Google Scholar 

  • Schlamowitz M, Peterson LU (1959) Studies of the optimum pH for action of pepsin on “native” and denaturated bovine serum albumin and bovine hemoglobin. J Biol Chem 234:3137–3145

    CAS  Google Scholar 

  • Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268:579–582

    Article  CAS  Google Scholar 

  • Seker S, Beyenal H, Ayhan F, Tanyolac A (1998) Production of microbial rennet from Mucor miehei in a continuously fed fermenter. Enzyme Microb Technol 23:469–474

    Article  CAS  Google Scholar 

  • Silveira GG, Oliveira GM, Ribeiro EJ, Monti R, Contiero J (2005) Microbial rennet produced by Mucor miehei in solid state and submerged fermentation. Braz Arch Biol Technol 48:931–937

    Article  Google Scholar 

  • Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 4:21–220

    Google Scholar 

  • Szecsi PB (1992) The aspartic proteases. Scand J Clin Lab Invest 210:5–22

    Article  CAS  Google Scholar 

  • Thakur MS, Karanth NG, Nand K (1990) Production of fungal rennet by Mucor miehei using solid state fermentation. Appl Microbiol Biotechnol 32:409–413

    Article  CAS  Google Scholar 

  • Thakur MS, Karanth NG, Nand K (1993) Downstream processing of microbial rennet from solid state fermented moldy bran. Biotechnol Adv 11:399–407

    Article  CAS  Google Scholar 

  • Tubesha ZA, Al-Delaimy KS (2003) Rennin like milk coagulant enzyme produced by local isolate of Mucor. Int J Dairy Technol 56:237–241

    Article  CAS  Google Scholar 

  • Turhan M, Mutlu M (1998) Kinetics of κ-casein/immobilized chymosin hydrolysis. Enzyme Microb Technol 22:342–347

    Article  CAS  Google Scholar 

  • Venera GD, Machalinski C, Zumárraga H, Biscoglio De Jimenez Bonino MJ (1997) Further characterization and kinetic parameter determination of milk clotting protease from Mucor bacilliformis. Appl Biochem Biotechnol 68:207–216

    Article  CAS  Google Scholar 

  • Vishwanatha KS, Appu Rao AG, Singh SA (2009) Characterization of aspartic proteinase from Aspergillus oryzae MTCC 5341. Food Chem 114:402–407

    Article  CAS  Google Scholar 

  • Wang HL (1967) Release of proteinase from mycelium of Mucor hiemalis. J Bacteriol 93:1794–1799

    CAS  Google Scholar 

  • Yamashita T, Higashi S, Higashi T, Machida H, Iwasaki S, Beppu T (1994) Protease with low thermostability derived from Mucor pusillus. US Patent 5332668

  • Yegin S, Fernandez-Lahore M, Guvenc U, Goksungur Y (2010) Production of extracellular aspartic protease in submerged fermentation with Mucor mucedo DSM 809. Afr J Biotechnol 9:6380–6386

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sirma Yegin or Marcelo Fernandez-Lahore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yegin, S., Fernandez-Lahore, M., Jose Gama Salgado, A. et al. Aspartic proteinases from Mucor spp. in cheese manufacturing. Appl Microbiol Biotechnol 89, 949–960 (2011). https://doi.org/10.1007/s00253-010-3020-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3020-6

Keywords

Navigation