Skip to main content
Log in

Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. Aspergillus sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing Aspergillus parasiticus and A. flavus, it is necessary to decipher the underlying mechanisms for its inability to produce aflatoxins. This review addresses the relationship between A. sojae and A. parasiticus and the advances that have been made in aflatoxin biosynthesis research, especially with regard to gene structure, genome organization, and gene regulation in A. parasiticus and A. flavus and how this has been used to assure the safety of A. sojae as an organism for food fermentation. The lack of aflatoxin-producing ability of A. sojae results primarily from an early termination point mutation in the pathway-specific aflR regulatory gene, which causes the truncation of the transcriptional activation domain of AflR and the abolishment of interaction between AflR and the AflJ co-activator. Both are required for gene expression. In addition, a defect in the polyketide synthase gene also contributes to its nonaflatoxigenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barros G, Chiotta ML, Torres A, Chulze S (2006) Genetic diversity in Aspergillus parasiticus population from the peanut agroecosystem in Argentina. Lett Appl Microbiol 42:560–566

    CAS  PubMed  Google Scholar 

  • Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 39:214–228

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4:1574–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MP, Brown-Jenco CS, Payne GA (1999) Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 26:81–98

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Bok J, Brooks W, Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cary JW, Ehrlich KC, Wright M, Chang P-K, Bhatnagar D (2000) Generation of aflR disruption mutants of Aspergillus parasiticus. Appl Microbiol Biotechnol 53:680–684

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Klich MA, Beltz SB (2005) Characterization of aflatoxin-producing fungi outside of Aspergillus section Flavi. Mycologia 97:425–432

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Ehrlich KC, Bland JM, Montalbano BG (2006) The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Appl Environ Microbiol 72:1096–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-K (2003) The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Genet Genom 268:711–719

    Article  CAS  Google Scholar 

  • Chang P-K (2004) Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae. J Biotechnol 107:245–253

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Cary JW, Bhatnagar D, Cleveland TE, Bennett JW, Linz JE, Woloshuk CP, Payne GA (1993) Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol 59:3273–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-K, Bhatnagar D, Cleveland TE, Bennett JW (1995a) Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section Flavi. Appl Environ Microbiol 61:40–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-K, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE (1995b) Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 61:2372–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-K, Yu J, Bhatnagar D, Cleveland TE (1999) The carboxy-terminal portion of the aflatoxin pathway regulatory protein AFLR of Aspergillus parasiticus activates GAL1::lacZ gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 65:2508–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-K, Bennett JW, Cotty PJ (2002) Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia 153:41–48

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Yu J, Yu JH (2004) aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genet Biol 41:911–920

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Horn BW, Dorner JW (2005) Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol 42:914–923

    Article  CAS  PubMed  Google Scholar 

  • Chang P-K, Ehrlich KC, Hua SS (2006) Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 108:172–177

    Article  CAS  PubMed  Google Scholar 

  • Crawford JM, Dancy BC, Hill EA, Udwary DW, Townsend CA (2006) Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci U S A 103:16728–16733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich KC, Montalbano BG, Cary JW (1999) Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene 230:249–257

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC, Chang P-K, Yu J, Cotty PJ (2004) Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl Environ Microbiol 70:6518–6524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich KC, Montalbano B, Boue SM, Bhatnagar D (2005a) An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin A to sterigmatocystin. Appl Environ Microbiol 71:8963–8965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich KC, Yu J, Cotty PJ (2005b) Aflatoxin biosynthesis gene clusters and flanking regions. J Appl Microbiol 99:518–527

    Article  CAS  PubMed  Google Scholar 

  • Flaherty JE, Payne GA (1997) Overexpression of aflR leads to upregulation of pathway gene transcription and increased aflatoxin production in Aspergillus flavus. Appl Environ Microbiol 63:3995–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad JC, Skouboe P, Samson RA (2005) Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol 28:442–453

    Article  CAS  PubMed  Google Scholar 

  • Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci U S A 95:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser DM, Dorner JW, Horn BW, Taylor JW (2000) The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet Biol 31:169–179

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Wicklow DT, Ito Y (1996) Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl Environ Microbiol 62:4036–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα protein-dependent signaling pathway. EMBO J 16:4916–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn BW, Greene RL, Sobolev VS, Dorner JW, Powell JH (1996) Association of morphology and mycotoxin production with vegetative compatibility groups in Aspergillus flavus, A. parasiticus, and A. tamarii. Mycologia 88:574–587

    Article  CAS  Google Scholar 

  • Ito Y, Peterson SW, Wicklow DT, Goto T (2001) Aspergillus pseudotamarii, a new aflatoxin producing species in Aspergillus section Flavi. Mycol Res 105:233–239

    Article  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, The Netherlands

    Google Scholar 

  • Klich MA, Mullaney EJ (1987) DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Exp Mycol 1:170–175

    Article  Google Scholar 

  • Klich MA, Mullaney EJ (1989) Use of bleomycin-containing medium to distinguish Aspergillus parasiticus from A. sojae. Mycologia 81:159–160

    Article  Google Scholar 

  • Klich MA, Pitt JI (1988) A laboratory guide to common Aspergillus species and their teleomorphs. CSIRO Division of Food Processing, North Ryde, NSW

    Google Scholar 

  • Klich MA, Yu J, Chang P-K, Mullaney EJ, Bhatnagar D, Cleveland TE (1995) Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Appl Microbiol Biotechnol 44:439–443

    Article  CAS  PubMed  Google Scholar 

  • Klich MA, Montalbano B, Ehrlich KE (1997) Northern analysis of aflatoxin biosynthesis genes in Aspergillus parasiticus and Aspergillus sojae. Appl Microbiol Biotechnol 47:246–249

    Article  CAS  Google Scholar 

  • Kumeda Y, Asao T (1996) Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol 62:2947–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumeda Y, Asao T (2001) Heteroduplex panel analysis, a novel method for genetic identification of Aspergillus section Flavi strains. Appl Environ Microbiol 67:4084–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtzman CP, Smiley MJ, Robert CJ, Wicklow DT (1986) DNA relatedness among wild and domesticated species in the Aspergillus flavus group. Mycologia 78:955–959

    Article  Google Scholar 

  • Lee CZ, Liou GY, Yuan GF (2006a) Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology 152:161–170

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Tominaga M, Hayashi R, Sakamoto K, Yamada O, Akita O (2006b) Aspergillus oryzae strains with a large deletion of the aflatoxin biosynthetic homologous gene cluster differentiated by chromosomal breakage. Appl Microbiol Biotechnol 72:339–345

    Article  CAS  PubMed  Google Scholar 

  • Matsushima K, Chang P-K, Yu J, Abe K, Bhatnagar D, Cleveland TE (2001a) Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis. Appl Microbiol Biotechnol 55:585–589

    Article  CAS  PubMed  Google Scholar 

  • Matsushima K, Yashiro K, Hanya Y, Abe K, Yabe K, Hamasaki T (2001b) Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Appl Microbiol Biotechnol 55:771–776

    Article  CAS  PubMed  Google Scholar 

  • Meyers DM, O’Brian G, Du WL, Bhatnagar D, Payne GA (1998) Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64:3713–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minto RE, Townsend CA (1997) Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev 97:537–2555

    Article  Google Scholar 

  • Montiel D, Dickinson MJ, Lee HA, Dyer PS, Jeenes DJ, Roberts IN, James S, Fuller LJ, Matsuchima K, Archer DB (2003) Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints. Mycol Res 107:1427–1434

    Article  CAS  PubMed  Google Scholar 

  • Moody SF, Tyler BM (1990a) Restriction enzyme analysis of mitochondrial DNA of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol 56:2441–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody SF, Tyler BM (1990b) Use of nuclear DNA restriction fragment length polymorphisms to analyze the diversity of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol 56:2453–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki T, Wilson JS, Sewadeh M (2001) What price precaution? European harmonization of aflatoxin regulations and African groundnuts exports. Euro Rev Agri Econom 28:263–284

    Article  Google Scholar 

  • Pariza MW, Johnson EA (2001) Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol 33:173–186

    Article  CAS  PubMed  Google Scholar 

  • Payne GA, Nystrom GJ, Bhatnagar D, Cleveland TE, Woloshuk CP (1993) Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol 59:156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M, Yu J (2006) Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44(Suppl):9–11

    Article  CAS  Google Scholar 

  • Price MS, Yu J, Nierman WC, Kim HS, Pritchard B, Jacobus CA, Bhatnagar D, Cleveland TE, Payne GA (2006) The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255:275–279

    Article  CAS  PubMed  Google Scholar 

  • Roze LV, Beaudry RM, Keller NP, Linz JE (2004) Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia 158:219–232

    Article  CAS  PubMed  Google Scholar 

  • Sakuno E, Wen Y, Hatabayashi H, Arai H, Aoki C, Yabe K, Nakajima H (2005) Aspergillus parasiticus cyclase catalyzes two dehydration steps in aflatoxin biosynthesis. Appl Environ Microbiol 71:2999–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schechtman MG (1992) United States government regulations affecting aspergilli and their products. Biotechnology 23:271–296

    CAS  PubMed  Google Scholar 

  • Sekine H, Nasuno S, Iguchi N (1969) Isolation of highly proteolytic mutants from Aspergillus sojae. Agri Biol Chem 33:1477–1482

    Article  CAS  Google Scholar 

  • Skory CD, Chang P-K, Linz JE (1993) Regulated expression of the nor-1 and ver-1 genes associated with aflatoxin biosynthesis. Appl Environ Microbiol 59:1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Chang P-K, Matsushima K, Yu J, Abe K, Bhatnagar D, Cleveland TE, Koyama Y (2002) Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene. Appl Environ Microbiol 68:3737–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, Gotoh K, Akita O (2006) Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl Environ Microbiol 72:484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trail F, Chang P-K, Cary J, Linz JE (1994) Structural and functional analysis of the nor-1 gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl Environ Microbiol 60:4078–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trail F, Mahanti N, Linz J (1995) Molecular biology of aflatoxin biosynthesis. Microbiology 141:755–765

    Article  CAS  PubMed  Google Scholar 

  • Vaamonde G, Patriarca A, Fernandez Pinto V, Comerio R, Degrossi C (2003) Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section Flavi from different substrates in Argentina. Int J Food Microbiol 88:79–84

    Article  CAS  PubMed  Google Scholar 

  • van Dijck PW, Selten GC, Hempenius RA (2003) On the safety of a new generation of DSM Aspergillus niger enzyme production strains. Regul Toxicol Pharmacol 38:27–35

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yokoyama K, Takahasi H, Kase N, Hanya Y, Yashiro K, Miyaji M, Nishimura K (2001) Identification of species in Aspergillus section Flavi based on sequencing of the mitochondrial cytochrome b gene. Int J Food Microbiol 71:75–86

    Article  CAS  PubMed  Google Scholar 

  • Watson AJ, Fuller LJ, Jeenes DJ, Archer DB (1999) Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Appl Environ Microbiol 65:307–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei DL, Jong SC (1986) Production of aflatoxins by strains of the Aspergillus flavus group maintained in ATCC. Mycopathologia 93:19–24

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Hatabayashi H, Arai H, Kitamoto HK, Yabe K (2005) Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 71:3192–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicklow DT (1984) Conidium germination rate in wild and domesticated yellow-green Aspergilli. Appl Environ Microbiol 47:299–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson JR, Yu J, Bland JM, Nierman WC, Bhatnagar D, Cleveland TE (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotechnol 74:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64:745–755

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chang P-K, Cary JW, Wright M, Bhatnagar D, Cleveland TE, Payne GA, Linz JE (1995) Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol 61:2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Woloshuk CP, Bhatnagar D, Cleveland TE (2000) Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene 248:157–167

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004a) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Whitelaw CA, Nierman WC, Bhatnagar D, Cleveland TE (2004b) Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiol Lett 237:333–340

    PubMed  Google Scholar 

  • Yuan GF, Liu CS, Chen CC (1995) Differentiation of Aspergillus parasiticus from Aspergillus sojae by random amplification of polymorphic DNA. Appl Environ Microbiol 61:2384–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perng-Kuang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, PK., Matsushima, K., Takahashi, T. et al. Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research. Appl Microbiol Biotechnol 76, 977–984 (2007). https://doi.org/10.1007/s00253-007-1116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1116-4

Keywords

Navigation