Skip to main content

Advertisement

Log in

Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phosphate (P)-solubilizing microorganisms as a group form an important part of the microorganisms, which benefit plant growth and development. Growth promotion and increased uptake of phosphate are not the only mechanisms by which these microorganisms exert a positive effect on plants. Microbially mediated solubilization of insoluble phosphates through release of organic acids is often combined with production of other metabolites, which take part in biological control against soilborne phytopathogens. In vitro studies show the potential of P-solubilizing microorganisms for the simultaneous synthesis and release of pathogen-suppressing metabolites, mainly siderophores, phytohormones, and lytic enzymes. Further trends in this field are discussed, suggesting a number of biotechnological approaches through physiological and biochemical studies using various microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azcon R, Azcon C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and response to VA endomycorrhiza. New Phytol 80:359–364

    CAS  Google Scholar 

  • Bano N, Musarrat J (2003a) Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance. Lett Appl Microbiol 36:349–353

    CAS  PubMed  Google Scholar 

  • Bano N, Musarrat J (2003b) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    CAS  PubMed  Google Scholar 

  • Bano N, Musarrat J (2004) Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol Lett 231:13–17

    CAS  PubMed  Google Scholar 

  • Belanger RR, Benyagoub M (1997) Challenges and prospects for integrated control of powdery mildews in the greenhouse. Can J Plant Pathol 19:310–314

    Google Scholar 

  • Brown AE, Hamilton JTG (1993) Indole-3-ethanol produced by Zygorrhynchusmoelleri, and indole-3-acetic acid analogue with antifungal activity. Mycol Res 96:71–74

    Google Scholar 

  • Butler MJ, Gardiner RB, Day AW (2005) Degradation of melanin or inhibition of its synthesis: are these a significant approach as a biological control of phytopathogenic fungi? Biol Control 32:326–336

    Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Google Scholar 

  • Chernin I, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chien SH, Sompongee D, Henao J, Hellums DT (1987) Greenhouse evaluation of phosphorus availability from compacted phosphate rocks with urea or with urea and triple superphosphate. Fertil Res 14:245–256

    Google Scholar 

  • Dalla GC (1986) Esperienze di lotta biologicacontrola fusariosi vascolare del garofano (Trials on the biological control of vascular kilt of carnations). Ann Inst Sper Floric 17:3012

    Google Scholar 

  • Dar Gh Hassan, Zargar MY, Beigh GM (1997) Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 34:74–80

    Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Google Scholar 

  • Del Campillo SE, Van der Zee SEATM, Torrent J (1999) Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. Eur J Soil Sci 50:391–399

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  • Droog F (1997) Plant glutathione S-transferases, a tale of theta and tau. J Plant Growth Regul 16:95–107

    CAS  Google Scholar 

  • Duffy B, Defago G (1999) Trace mineral amendments in agriculture for optimizing the biocontrol activity of plant-associated bacteria. In: Berthelin P, Huang M, Bollag JM, Andreux F (eds) Effect of mineral-organic-microorganism interactions on soil and freshwater environments. Kluwer Academic & Plenum, New York, pp 295–304

    Google Scholar 

  • Dugassa GD, von Alten H, Schonbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    CAS  Google Scholar 

  • Dunn C, Crowley JJ, Moenne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultinum by Stenotrophomonasmaltophilia W18 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    Google Scholar 

  • Fenice M, Selbmann L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Biores Technol 73:157–162

    CAS  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Google Scholar 

  • Fravel DR, Roberts DP (1991) In situ evidence for the role of glucose oxidase in the biocontrol of Verticillium wilt by Talaromyces flavus. Biocontrol Sci Technol 1:91–99

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    CAS  PubMed  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizae. New Phytol 95:247–261

    CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. IFA Technical Conference, New Orleans, LA, pp 1–21. http://goldsteinlab.alfred.edu/publications.html

  • Goldstein AH, Rogers RD (1999) Biomediated continuous release phosphate fertilizer. US Patent 5,912,398

  • Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn K, Strittmatter (1994) Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226:619–626

    CAS  PubMed  Google Scholar 

  • Hamill JD (1993) Alterations in auxin and cytokinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria: a review. Aust J Plant Physiol 20:405–423

    CAS  Google Scholar 

  • Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, UK, pp 229–265

    Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbaues C, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    CAS  Google Scholar 

  • Hoitink HAJ, Kraus MS, Han DY (2001) Spectrum and mechanisms of plant disease control with composts. In: Stoffela PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis, Boca Raton, FL, pp 263–273

    Google Scholar 

  • Iyamuremye F, Dick RP (1996) Organic amendments and phosphorus sorption by soils. Adv Agron 56:139–185

    CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johansson J, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 1:1–13

    Google Scholar 

  • Khan MR, Khan SM (2001) Biomanagement of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms. Int J Pest Manag 47:227–231

    Google Scholar 

  • Khan MR, Khan SM (2002) Effect of root-dip treatment with certain phosphate-solubilizing microorganisms on the Fusarium wilt of tomato. Biores Technol 85:213–215

    CAS  Google Scholar 

  • Kloepper JW, Lifshitz K, Zablotovicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kpomblekou K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453

    Google Scholar 

  • Kpomblekou K, Chien SH, Henao J, Hill WA (1991) Greenhouse evaluation of phosphate fertilizers produced from Togo phosphate rocks. Commun Soil Sci Plant Anal 22:63–73

    CAS  Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    CAS  PubMed  Google Scholar 

  • Kucey RMN, Jansen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Lambais MR, Mehdy MC (1995) Suppression of endochitinase, beta-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant-Microb Interact 6:75–83

    Google Scholar 

  • Lehinos V (1994) Effects of pH and glucose on auxin production of phosphate-solubilizing rhizobacteria in vitro. Microbiol Res 149:135–138

    Google Scholar 

  • Lehinos V, Vacek O (1994) Biosynthesis of auxin by phosphate-solubilizing rhizobacteria from wheat (Triticum aestivum) and rye (Secale cereale). Microbiol Res 149:31–35

    Google Scholar 

  • Lemanceau P, Alabouvette C, Meyer JM (1985) Production of fusarinine and iron assimilation by pathogenic and non-pathogenic Fusarium. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum, London, pp 251–259

    Google Scholar 

  • Machuca A, Napoleao D, Milagres AMF (2001) Detection of metal-chelating compounds from wood-rotting fungi Trametes versicolor and Wolfiporia cocos. World J Microbiol Biotechnol 17:687–690

    CAS  Google Scholar 

  • Martinez Noel GMA, Madrid EA, Botín R, Lamattina L (2001) Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiol Biochem 39:815–823

    CAS  Google Scholar 

  • Milagres AMF, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6

    CAS  PubMed  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    CAS  Google Scholar 

  • Norlaeny N, Marschner H, Gerge E (1996) Effects of liming and mycorrhizal colonization on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine max L.) grown in two tropical acid soils. Plant Soil 181:275–285

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:48–88

    Google Scholar 

  • Pal KK, Tilak VBP, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    CAS  PubMed  Google Scholar 

  • Patidar P, Agrawal D, Banerjee T, Patil S (2005) Optimization of process parameters for chitinase production by soil isolates of Penicillium chrysogenum under solid substrate fermentation. Proc Biochem 40:2962–2967

    CAS  Google Scholar 

  • Petruccioli M, Federici F, Bucke C, Keshavarz T (1999) Enhancement of glucose oxidase production by Penicillium variabile P16. Enzyme Microb Technol 24:397–401

    CAS  Google Scholar 

  • Postma J, Montanari M, van der Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Google Scholar 

  • Pozo M, Azcon C, Barea J, Dumas-Gaudot E (1998) Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophtora parasitica. J Exp Bot 49:1729–1739

    CAS  Google Scholar 

  • Prabhu V, Biolchini PF, Boyer GL (1996) Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. BioMetals 9:229–234

    CAS  Google Scholar 

  • Rajan SSS, Watkinson JH (1993) Unacidulated and partially acidulated phosphate rocks. Agronomic effectiveness and the rate of dissolution of phosphate rock. Fertil Res 33:267–277

    Google Scholar 

  • Rattanakit N, Plikomol A, Yano S, Wakayama M, Tachiki T (2002) Utilization of shrimp shellfish waste as a substrate for solid-state cultivation of Aspergillus sp. S1–13: evaluation of a culture based on chitinase formation which is necessary for chitin-assimilation. J Biosci Bioeng 93:550–556

    CAS  PubMed  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864

    CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Roco A, Perez LM (2001) In vitro biocontrol activity of Trichoderma harzianum on Alternaria alternata in the presence of growth regulators. Electron J Biotechnol 4. http://www.ejbiotechnology.info/content/vol4/issue2/full/1/

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  PubMed  Google Scholar 

  • Rogers D,Wolfram JH (1993) Microbial solubilization of phosphate. US Patent 5,256,544

  • Sattar MA, Gaur AC (1987) Production of auxins and gibberellins by phosphate-dissolving microorganisms. Zentralbl Mikrobiol 142:393–395

    CAS  Google Scholar 

  • Segall I (1995) Marketing compost as a pest control product. Biocycle 36:65–67

    Google Scholar 

  • Shapira R, Ordentlich A, Chet I, Openheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249

    CAS  Google Scholar 

  • Sinclair A, Dyson CB (1988) An interim report on the MAF National Series forms of phosphate fertilizer trials, herbage dry matter production for growing seasons 1982/83 to 1987/8 inclusive. MAFTech, Wellington

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:211–244

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, St. John BJ, Smith FA, Nicholas DJD (1985) Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. and Allium cepa L.: effects of mycorrhizal infection and phosphate nutrition. New Phytol 99:211–227

    CAS  Google Scholar 

  • Stleger RJ, Cooper RM, Charnley AK (1986) Cuticle degrading enzyme of entomopathogenic fungi: cuticle degradation in vitro by enzymes from entomopathogens. J Invertebr Pathol 47:167–177

    CAS  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter H (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol 29:1955–1979

    CAS  PubMed  Google Scholar 

  • Stuvier MH, Custers JHHV (2001) Engineering disease resistance in plants. Nature 411:865–868

    Google Scholar 

  • Sylvia D (1998) Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 20:39–43

    Google Scholar 

  • Traquair JA (1995) Fungal biocontrol of root diseases: endomycorrhizal suppression of cylindrocarpon root rot. Can J Bot 73:S89–S95

    Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M (2004) Multifunctional properties of a plant growth promoting bacterium entrapped in k-carrageenan. In: Pedraz JL, Orive G, Poncelet D (eds) XII international workshop on bioencapsulation, Vitoria, Univ Pais Vasco, 24–26 September 2004, pp 162–166

    Google Scholar 

  • Vassilev N, Fenice M, Federici F (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol Tech 10:585–588

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R (1997a) Solubilization of rock phosphate by immobilized cells of Aspergillus niger. Biores Technol 59:1–4

    CAS  Google Scholar 

  • Vassilev N, Fenice M, Federici F (1997b) Olive mill waste water treatment by immobilized cells of Aspergillus niger and its enrichment with soluble phosphate. Proc Biochem 32:617–620

    CAS  Google Scholar 

  • Vassilev N, Toro M, Vassileva M (1997c) Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Biores Technol 61:29–32

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Biores Technol 79:263–271

    CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005a) Biocontrol properties of microbially-treated sugar beet wastes in presence of rock phosphate. J Biotechnol 118S1:S177

    Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005b) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Biotechnol 4:235–243

    CAS  Google Scholar 

  • Vassilev N, Medina A, Vassileva M (2006a) Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant Soil (in press)

  • Vassilev N, Nikolaeva I, Vassileva M (2006b) Phosphate ore solubilization and simultaneous indole-3-acetic acid production by a gel-entrapped bacterium in fermentation conditions. Chem Eng Commun (in press)

  • Vassileva M, Azcon R, Barea JM, Vassilev N (1998) Application of encapsulated filamentous fungus in solubilization of inorganic phosphate. J Biotechnol 63:67–72

    CAS  PubMed  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassilev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarrowia lipolytica. Proc Biochem 35:693–697

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Winkelmann G (1979) Surface polymers and hydroxyl acids. A model of iron supply in sideramine-free fungi. Arch Microbiol 121:43–51

    CAS  Google Scholar 

  • Winkelmann G (1991) Importance of siderophores in fungal growth, sporulation and spore germination. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 49–65

    Google Scholar 

  • Yao Q, Li X, Feng G, Christie P (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230:279–285

    CAS  Google Scholar 

  • Zayed G, Abdel-Motaal H (2005) Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea. Biores Technol 96:929–935

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Project MEC CTM2005-06955 and R&C Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Vassilev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilev, N., Vassileva, M. & Nikolaeva, I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71, 137–144 (2006). https://doi.org/10.1007/s00253-006-0380-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0380-z

Keywords

Navigation