Skip to main content
Log in

A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Previously, we found that cytosolic thioredoxin is a negative regulator for an oxidative stress responsive transcription factor, Yap1p (yeast AP-1-like transcription factor), i.e., this transcription factor is constitutively concentrated in the nucleus in the thioredoxin-deficient mutant (trx1Δtrx2Δ) due to an impairment of the reactive oxygen species-scavenging activity of this mutant [Izawa et al. (1999) J Biol Chem 274:28459–28465]. Based on these findings, we developed a screening method to discover substances that show antioxidant activity. With this method, antioxidant activity was evaluated by monitoring the subcellular localization of Yap1p. Since Yap1p is oxidized and accumulates in the nucleus in trx1Δtrx2Δ cells, it is easy to identify antioxidant activity by observing the localization of green fluorescent protein (GFP)-tagged Yap1p. If exogenous substances taken in by trx1Δtrx2Δ cells were able to function as antioxidants to reduce the oxidized form of Yap1p, GFP1-Yap1p would diffuse into the cytoplasm. We used this system to screen for antioxidant activity in mushrooms, and found that the edible mushroom Agaricus blazei Murill is an excellent source of antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4
Fig. 5a–c
Fig. 6

Similar content being viewed by others

References

  • Carmel-Harel O, Storz G (2000) Role of the glutathione- and thioredoxin-dependent reduction system in the Escherichia coli and Saccharomyces cerevisiae response to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  CAS  PubMed  Google Scholar 

  • Gan ZR (1991) Yeast thioredoxin genes. J Biol Chem 266:1692–1696

    CAS  PubMed  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1997) Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Biol Cell 8:1699–1707

    CAS  PubMed  Google Scholar 

  • Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94:3633–3638

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    CAS  PubMed  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Shimura K, Itoh H, Kawade M (1997) Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei Murill (Iwade strain 101) Himematsutake and its mechanisms in tumor-bearing mice. Anticancer Res 17:277–284

    CAS  PubMed  Google Scholar 

  • Itoh H, Ito H, Amano H, Noda H (1994) Inhibitory action of a (1–6)-β-d-glucan-protein complex (F III-2-b) isolated from Agaricus blazei Murill (Himematsutake) on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. Jpn J Pharmacol 66:265–271

    CAS  PubMed  Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1995) Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368:73–76

    CAS  PubMed  Google Scholar 

  • Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A (1998) Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330:811–817

    CAS  PubMed  Google Scholar 

  • Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, Kimura A (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459–28465

    Article  CAS  PubMed  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    CAS  PubMed  Google Scholar 

  • Kakuta M, Tanigawa A, Kikuzaki H, Misaki A (2000) Isolation and chemical characterization of antioxidative substance and glucans from fruiting body of Agaricus blazei. Biryo Eiyouso Kenkyu 17:83–90

    Google Scholar 

  • Kawagishi H, Kanao T, Inagaki R, Mizuno T, Shimura K, Ito H, Hagiwara T, Nakamura T (1990) Formolysis of a potent antitumor (1–6) β-d-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydr Polym 12:393–403

    CAS  Google Scholar 

  • Kuge S, Jone N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16:1710–1720

    Article  CAS  PubMed  Google Scholar 

  • Kuge S, Toda T, Iizuka N, Nomoto A (1998) Crm1 (XpoI)-dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3:521–532

    Article  CAS  PubMed  Google Scholar 

  • Kuge S, Arita M, Murayama A, Maeta K, Izawa S, Inoue Y, Nomoto A (2001) Regulation of the yeast Yap1 nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21:6139–6150

    Article  CAS  PubMed  Google Scholar 

  • Martins de Oliveira J, Jordao BQ, Ribeiro LR, Ferreira da Eira A, Mantovani MS (2002) Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food Chem Toxicol 40:1775–1780

    Article  PubMed  Google Scholar 

  • Mizuno T (1995) Bioactive biomolecules of mushrooms—food, function and medical effect of mushroom fungi. Food Rev Int 11:7–21

    CAS  Google Scholar 

  • Muller EG (1991) Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266:9194–9202

    CAS  PubMed  Google Scholar 

  • Nakajima A, Ishida T, Koga M, Takeuchi T, Mazda O, Takeuchi M (2002) Effect of hot water extract from Agaricus blazei Murill on antibody-producing cells in mice. Int Immunopharmacol 2:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Yoshida S, Tetsuka T (1999) Involvement of thioredoxin in the redox regulation of nuclear factor kappa B. In: Packer L, Yodoi J (eds) Redox regulation of cell signaling and its clinical application. Dekker, New York, pp 261-277

  • Sasada T, Yodoi J (1999) Thioredoxin/adult T-cell leukemia-derived factor (ADF) as a key regulator of redox. In: Packer L, Yodoi J (eds) Redox regulation of cell signaling and its clinical application. Dekker, New York, pp 1-11

  • Sorimachi K, Ikehara Y, Maezato G, Okubo A, Yamazaki S, Akimoto K, Niwa A (2001) Inhibition by Agaricus blazei Murill fractions of cytopathic effect induced by Western Equine Encephalitis (WEE) virus on VERO cells in vitro. Biosci Biotechnol Biochem 65:1645–1647

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275:15535–15540

    Article  CAS  PubMed  Google Scholar 

  • Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I (2001) Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J Agric Food Chem 49:5843–5847

    Article  CAS  PubMed  Google Scholar 

  • Talorete TPN, Isoda H, Maekawa T (2002) Agaricus blazei (class Basidiomycotina) aqueous extract enhances the expression of c-Jun protein in MCF7 cells. J Agric Food Chem 50:5162–5166

    Article  CAS  PubMed  Google Scholar 

  • Toone WM, Jones N (1998) Stress-activated signaling pathways in yeast. Genes Cells 3:485–498

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Lee HL, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17:7416–7429

    Article  CAS  PubMed  Google Scholar 

  • Yang CF, Shen HM, Ong CN (2000) Ebselen induces apoptosis in HepG(2) cells through rapid depletion of intracellular thiols. Arch Biochem Biophys 374:142–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. S. Kuge (Tohoku University) and S. Miyabe (Tai-Ai) for providing plasmids and mushrooms, respectively. This study was partly supported by the Kyoto University Venture Business Laboratory (VBL) and Bio-oriented Technology Research Advancement Institution (BRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izawa, S., Inoue, Y. A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Appl Microbiol Biotechnol 64, 537–542 (2004). https://doi.org/10.1007/s00253-003-1467-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1467-4

Keywords

Navigation