Skip to main content

Advertisement

Log in

Development of a novel monoclonal antibody that binds to most HLA-A allomorphs in a conformation-dependent yet peptide-promiscuous fashion

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Specificity analyses of peptide binding to human leukocyte antigen (HLA)-A molecules have been hampered due to a lack of proper monoclonal antibodies (mAbs) for certain allomorphs, such as the prevalent HLA-A1 for Caucasians and HLA-A11 for Asians. We developed a mAb that recognizes a conformational epitope common to most HLA-A allomorphs. The mAb, named A-1, does not discriminate peptides by amino acid sequences, making it suitable for measuring peptide binding. A stabilization assay using TAP-deficient cell lines and A-1 was developed to investigate the specificity of peptide binding to HLA-A molecules. Regarding the evolution of HLA-A genes, the A-1 epitope has been conserved among most HLA-A allomorphs but was lost when the HLA-A gene diversified into the HLA-A*32, HLA-A*31, and HLA-A*33 lineages together with HLA-A*29 after bifurcating from the HLA-A*25 and HLA-A*26 branchs. The establishment of A-1 is expected to help researchers investigate the peptide repertoire and develop computational tools to identify cognate peptides. Since no HLA-A locus-specific mAb has been available, A-1 will also be useful for analyzing the locus-specific regulation of the HLA gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HLA:

Human leukocyte antigen

PBMC:

Peripheral blood mononuclear cell

References

  • Barouch D, Davenport M, McMichael A, Reay P (1995) A mAb against HLA-A2 can be influenced both posotively and negatively by the associated peptide. Int Immunol 7:1599–1605

    Article  CAS  Google Scholar 

  • Brodsky F, Parham P (1982a) Evolution of HLA antigenic determinants: species cross-reactions of monoclonal antibodies. Immunogenetics 15:151–166

    Article  CAS  Google Scholar 

  • Brodsky F, Parham P (1982b) Monomorphic anti-HLA-A, B, C monoclonal antibodies detecting molecular subunits and combinatorial determinants. J Immunol 128:129–135

    CAS  PubMed  Google Scholar 

  • Carlsson B, Forsberg O, Bengtsson M, Toetterman T, Essand M (2007) Characterization of human prostate and breast cancer cell lines for experimental T cell-based immunotherapy. Prostate 67:389–395

    Article  Google Scholar 

  • Ferre H, Ruffet E, Blicher T, Sylvester-Hvid C, MNielsen L, Hobley T, Thomas O, Buus S (2003) Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: a novel strategy exploiting disulfide assisted protein folding. Protein Sci 12:551–559

    Article  CAS  Google Scholar 

  • Foung S, Taidi B, Ness D, Grumet F (1986) A monoclonal antibody against HLA-A11 and A24. Hum Immunol 15:316–319

    Article  CAS  Google Scholar 

  • Gewurz B, Wang E, Tortorella D, Schust D, Ploegh H (2001) Human cytomegalovirus US2 endoplasmic reticulum-luminal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol 75:5197–5204

    Article  CAS  Google Scholar 

  • Griffioen M, Ouwerkerk I, Harten V, Schrier P (2000) HLA-B locus-specific downregulation in human melanoma requires enhancer a as well as sequence element located downstream of the transcription initiation site. Immunogenetics 52:121–128

    Article  CAS  Google Scholar 

  • Hogquist K, Grandea A III, Bevan M (1993) Peptide variants reveal how antibodies recognize major histocompatibility complex class I. Eur J Immunol 23:3028–3036

    Article  CAS  Google Scholar 

  • Ivanyi D, Van de Meugheuvel W (1984) A monomorphic HLA-specific monoclonal antibody, W6/32 reacts with the H-2Db molecule of normal mouse lymphocytes. Immunogenetics 20:699–703

    Article  CAS  Google Scholar 

  • Iwakawa M, Goto M, Noda S, Sagara M, Yamada S, Yamamoto N, Kawakami Y, Matsui Y, Miyazawa Y, Yamazaki H, Tsuji H, Ohno T, Mizoe J, Tsuji H, Imai T (2005) DNA repair capacity measured by high throughput alkaline comet assays in EBV-transformed cell lines and peripheral blood cells from cancer patients and healthy volunteers. Mutat Res 588:1–6

    Article  CAS  Google Scholar 

  • Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M (2017) NetMHCpan-4.0: improved peptide-MHC class I interaction predictionsintegrating eluted ligand and pwptide binding affinity data. J Immunol 199:3360–3368

    Article  CAS  Google Scholar 

  • Kahn-Perles B, Boyer C, Arnold B, Sanderson A, Ferrier P, Lemonnier F (1987) Acquisition of HLA class I W6/32 defined antigenic determinant by heavy vhains from different species following association with bovine b2-microglobulin. J Immunol 138:2190–2196

    CAS  PubMed  Google Scholar 

  • Keeney J, Hansen T (1989) Cis-acting elements determine the locus-specific shutoff of class I major histocompatibility genes in murine S49 lymphoma sublines. Proc Natl Acad Sci U S A 86:6288–6292

    Article  CAS  Google Scholar 

  • Kievits F, Ivanyi P (1987) Monomorphic anti-HLA monoclonal antibody (W6/32) recognizes polymorphic H-2 heavy chain determinants expressed by association with bovine or human but not murine b2-microglobulin. Hum Immunol 20:115

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Madden D, Garboczi D, Wiley D (1993) The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75:693–708

    Article  CAS  Google Scholar 

  • Mashiba T, Udaka K, Hirachi Y, Hiasa Y, Miyakawa T, Satta Y, Osoda T, Kataoka S, Kohara M, Onji M (2007) Identification of CTL epitopes in hepatitis C virus by a genome-wide computational scanning and a rational design of peptide vaccine. Immunogenetics 59:197–209

    Article  CAS  Google Scholar 

  • Maziarz RT, Fraser J, Strominger J, Burakoff S (1986) The human HLA-specific monoclonal antibody W6/32 recognizes a discontinuous epitope within the a2 domain of murine H-2Db. Immunogenetics 24:206–208

    CAS  PubMed  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants by a novel eukaryotic vector. Gene 108:193–200

    Article  CAS  Google Scholar 

  • Oiso M, Eura M, Katsura F, Takiguchi M, Sobao Y, Masuyama K, Nakashima M, Itoh K, Ishikawa T (1999) A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted sytotoxic T lymphocytes. Int J Cancer 81:387–394

    Article  CAS  Google Scholar 

  • Parham P, Barnstable C, Bodmer W (1979) Use of a monoclonal antibody (W6/32) in structural studies of hLA-A, B, C antigens. J Immunol 123:342–349

    CAS  PubMed  Google Scholar 

  • Ran F, Hsu P, Wright J, Agarwala V, Scott D, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  • Robinson J, Waller M, Stoehr P, Marsh S (2005) IPD-the immuno polymorphism database. Nucleic Acids Res 33:D523–D526

    Article  CAS  Google Scholar 

  • Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh S (2011) The IMGT/HLA database. Nucleic Acids Res 39:D1171–D1176

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Smith K, Mace B, Valenzuela A, Vigna J, McCutcheon J, Barbosa J, Huczko E, Engelhard V, Lutz C (1996) Probing HLA-B7 conformational shifts induced by peptide-binding groove mutations and bound peptide with anti-HLA monoclonal antibodies. J Immunol 157:2470–2478

    CAS  PubMed  Google Scholar 

  • Snyder S, Wang J, Waring J, Ginder G (2001) Identification of CCAAT displacement protein (CDP/cut) as a locus-specific repressor of major histocompatibility complex gene expression in human tumor cells. J Biol Chem 276:5323–5330

    Article  CAS  Google Scholar 

  • Stam N, Vroom T, Peters P, Pastoors E, Ploegh H (1990) HLA-A- and HLA-B-specific monoclonal antibodies reactive with free heavy chians in western blots, in formalin-fixedm paraffin-embedded tissue sections and in cryoimmuno-electron microscopy. Int Immunol 2:113–125

    Article  CAS  Google Scholar 

  • Storkus W, Alexander J, Payne A, Dawson J, Cresswell P (1989) Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc Natl Acd Sci USA 86:2361–2364

    Article  CAS  Google Scholar 

  • Tahara T, Yang S, Khan R, Abish S, Haemmerling G, Haemmerling U (1990) HLA antibody responses in HLA class I transgenic mice. Immunogenetics 32:351–360

    Article  CAS  Google Scholar 

  • Udaka K, Wiesmueller K-H, Kienle S, Jung G, Tamamura H, Yamagishi H, Okumura K, Walden P, Suto T, Kawasaki T (2000) An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Immunogenetics 51:816–828

    Article  CAS  Google Scholar 

  • Wang J, Yu D, Fukazawa T, Kellner H, Wen J, Cheng X-K, Roth G, Williams K, Raybourne R (1994) A monoclonal antibody that recognizes HLA-B27 in the context of peptides. J Immunol 152:1197–1205

    CAS  PubMed  Google Scholar 

  • Zemmour J, Little A-M, Schendel D, Parham P (1992) The HLA-A, B “negative” mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol 148:1941–1948

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. 97–166

Download references

Acknowledgments

We thank Drs. P. Parham, P. Cresswell, M. Takiguchi, G. Nolan, N. Kashiwagi, and J. Strominger for generous gift of cell lines. We also thank Dr. Jun-ichi Miyazaki for providing the pCAGGSneo vector.

Funding

This study was supported by grants from the JSPS, MEXT (16H06498, KU), AMED (JP18lm0203008, KU), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Udaka.

Ethics declarations

This study did not use human specimens. Immunization of mice was conducted following the institutional guideline for animal handling and experiments.

Conflict of interest

The authors in the Department of Immunology at Kochi University have worked in funded collaboration with NEC Co., Ltd., to develop computational platforms for predicting HLA-binding peptides.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T., Shimizu, T., Kanoh, M. et al. Development of a novel monoclonal antibody that binds to most HLA-A allomorphs in a conformation-dependent yet peptide-promiscuous fashion. Immunogenetics 72, 143–153 (2020). https://doi.org/10.1007/s00251-020-01154-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-020-01154-w

Keywords

Navigation