Skip to main content
Log in

NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30–45 °C and that the transition cooperativity is very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bello J, Bello HR, Granados E (1982) Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry 21:461–465

    Article  CAS  PubMed  Google Scholar 

  • Brown LR, Lauterwein J, Wüthrich K (1980) High-resolution 1H-NMR studies of self-aggregation in aqueous solution. Biochim Biophys Acta 622:231–244

    Article  CAS  PubMed  Google Scholar 

  • Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031:143–161

    Article  CAS  PubMed  Google Scholar 

  • Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein AV, Ptitsyn OB (2002) Protein physics: a course of lectures. Academic Press, Amsterdam

    Google Scholar 

  • Goto Y, Hagihara Y (1992) Mechanism of the conformational transition of melittin. Biochemistry 31:732–738

    Article  CAS  PubMed  Google Scholar 

  • Graziano G (2010) On the molecular origin of cold denaturation of globular proteins. Phys Chem Chem Phys 12:14245–14252

    Article  CAS  PubMed  Google Scholar 

  • Hagihara Y, Kataoka M, Aimoto S, Goto Y (1992) Charge repulsion in the conformational stability of melittin. Biochemistry 31:11908–11914

    Article  CAS  PubMed  Google Scholar 

  • Hagihara Y, Oobatake M, Goto Y (1994) Thermal unfolding of tetrameric melittin: comparison with the molten globule state of cytochrome c. Protein Sci 3:1418–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1998) The structure of the melittin tetramer at different temperatures: an NOE-based calculation with chemical shift refinement. Eur J Biochem 257:479–487

    Article  CAS  PubMed  Google Scholar 

  • Kaya H, Uzunoğlu Z, Chan HS (2013) Spatial ranges of driving forces are a key determinant of protein folding cooperativity and rate diversity. Phys Rev E 88:044701(1)–044701(5)

    Article  Google Scholar 

  • Kemple MD, Buckley P, Yuan P, Prendergast FG (1997) Main chain and side chain dynamics of peptides in liquid solution from 13C NMR: melittin as a model peptide. Biochemistry 36:1678–1688

    Article  CAS  PubMed  Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauterwein J, Brown LR, Wüthrich K (1980) High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta 622:219–230

    Article  CAS  PubMed  Google Scholar 

  • Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, Chichester

    Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetic of protein structure. Adv Prot Chem 47:307–425

    Article  CAS  Google Scholar 

  • Miura Y (2012) NMR studies on the monomer–tetramer transition of melittin in an aqueous solution at high and low temperatures. Eur Biophys J 41:629–636

    Article  CAS  PubMed  Google Scholar 

  • Murphy KP, Freire E (1993) Structural energetics of protein stability and folding cooperativity. Pure Appl Chem 65:1939–1946

    Article  CAS  Google Scholar 

  • Murphy KP, Privalov PL, Gill SJ (1990) Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247:559–561

    Article  CAS  PubMed  Google Scholar 

  • Othon CM, Kwon O, Lin MM, Zewail AH (2009) Solvation in protein (un)folding of melittin tetramer monomer transition. Proc Natl Acad Sci USA 106:12593–12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaxco KW, Simons KT, Ruczinski I, Baker D (2000) Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:11177–11183

    Article  CAS  PubMed  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB (1995) Molten globule and protein folding. Adv Prot Chem 47:83–229

    Article  CAS  Google Scholar 

  • Qiu W, Zhang L, Kao Y, Lu W, Li T, Kim J, Sollenberger GM, Wang L, Zhong D (2005) Ultrafast hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly. J Phys Chem B 109:16901–16910

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2006) Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 83:111–121

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam K, Bello J, Aimoto S (1991) Conformational change in melittin upon complexation with an anionic melittin analog. FEBS Lett 295:200–202

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam K, Aimoto S, Bello J (1992) Conformation studies of anionic melittin analogues: effect of peptide concentration, pH, ionic strength, and temperature—models for protein folding and halophilic proteins. Biopolymers 32:981–992

    Article  CAS  PubMed  Google Scholar 

  • Wilcox W, Eisenberg D (1992) Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding. Protein Sci 1:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Miura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, Y. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution. Eur Biophys J 45, 347–354 (2016). https://doi.org/10.1007/s00249-015-1102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1102-1

Keywords

Navigation