Skip to main content
Log in

Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The roles of allosteric effects of ATP and protein oligomerisation in the mechanisms of P-type ATPases belong to the most controversial and least well understood topics in the field. Recent crystal structural and kinetic data, however, now allow certain hypotheses to be definitely excluded and consistent hypotheses to be developed. The aim of this review is to critically discuss recent results and, in the light of them, to present a set of conclusions which could form the basis of future research. The major conclusions are: (1) at saturating ATP concentrations P-type ATPases function as monomeric enzymes, (2) the catalytic units of P-type ATPases only possess a single ATP binding site, (3) at non-saturating ATP concentrations P-type ATPases exist as diprotomeric (or higher oligomeric) complexes, (4) protein–protein interactions within a diprotomeric complex enhances the enzymes’ ATP binding affinity, (5) ATP binding to both protomers within a diprotomeric complex causes it to dissociate into two separate monomers. The physiological role of protein–protein interactions within a diprotomer may be to enhance ATP binding affinity so as to scavenge ATP and maximize the ion pumping rate under hypoxic or anoxic conditions. For the first time a structural basis for the well-known ATP allosteric acceleration of the E2 → E1 transition is presented. This is considered to be due to a minimization of steric hindrance between neighbouring protomers because of the ability of ATP to induce a compact conformation of the enzymes’ cytoplasmic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K, Kaya S, Imagawa T, Taniguchi K (2002) Gastric H/K-ATPase liberates two moles of Pi from one mole of phosphoenzyme formed from a high-affinity ATP binding site and one mole of enzyme-bound ATP at the low-affinity site during cross-talk between catalytic subunits. Biochemistry 41:2438–2445. doi:10.1021/bi015622r

    Article  PubMed  CAS  Google Scholar 

  • Albers RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 36:727–756. doi:10.1146/annurev.bi.36.070167.003455

    Article  PubMed  CAS  Google Scholar 

  • Andersen JP (1989) Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim Biophys Acta 988:47–72

    PubMed  CAS  Google Scholar 

  • Apell HJ, Diller A (2002) Do H+ ions obscure electrogenic Na+ and K+ binding in the E1 state of the Na+,K+-ATPase? FEBS Lett 532:198–202. doi:10.1016/S0014-5793(02)03675-X

    Article  PubMed  CAS  Google Scholar 

  • Apell HJ, Roudna M, Corrie JET, Trentham DR (1996) Kinetics of phosphorylation of Na,K-ATPase by inorganic phosphate detected by a fluorescence method. Biochemistry 35:10922–10930. doi:10.1021/bi960238t

    Article  PubMed  CAS  Google Scholar 

  • Askari A (1987) (Na+ + K+)-ATPase: on the number of the ATP sites of the functional unit. J Bioenerg Biomembr 19:359–374. doi:10.1007/BF00768539

    Article  PubMed  CAS  Google Scholar 

  • Askari A, Huang W (1982) Na+,K+-ATPase: evidence for the binding of ATP to the phosphoenzyme. Biochem Biophys Res Commun 104:1447–1453. doi:10.1016/0006-291X(82)91412-7

    Article  PubMed  CAS  Google Scholar 

  • Berberián G, Helguera G, Beaugé L (1993) ATP activation of plasma membrane yeast H+-ATPase shows complex kinetics independently of the degree of purification. Biochim Biophys Acta 1153:283–288. doi:10.1016/0005-2736(93)90417-X

    Article  PubMed  Google Scholar 

  • Bishop JE, Al-Shawi MK, Inesi G (1987) Relationship of the regulatory nucleotide site to the catalytic site of the sarcoplasmic reticulum Ca-ATPase. J Biol Chem 262:4658–4663

    PubMed  CAS  Google Scholar 

  • Blanco G, Koster JC, Mercer RW (1994) The α subunit of the Na+,K+-ATPase specifically and stably associates into oligomers. Proc Natl Acad Sci USA 91:8542–8546. doi:10.1073/pnas.91.18.8542

    Article  PubMed  CAS  Google Scholar 

  • Blostein R (1975) Na+ATPase of the mammalian erythrocyte membrane. Reversibility of phosphorylation at 0°. J Biol Chem 250:6118–6124

    PubMed  CAS  Google Scholar 

  • Borlinghaus R, Apell HJ (1988) Current transients generated by the Na+/K+-ATPase after an ATP concentration jump: dependence on sodium and ATP concentration. Biochim Biophys Acta 939:197–206. doi:10.1016/0005-2736(88)90063-6

    Article  PubMed  CAS  Google Scholar 

  • Bühler R, Stürmer W, Apell HJ, Läuger P (1991) Charge translocation by the Na,K-pump: I. Kinetics of local field changes studied by time-resolved fluorescence measurements. J Membr Biol 121:141–161. doi:10.1007/BF01870529

    Article  PubMed  Google Scholar 

  • Buxbaum E, Schoner W (1990) Blocking of Na+/K+ transport by the MgPO4 complex analogue Co(NH3)4PO4 leaves the Na+/Na+-exchange reaction of the sodium pump unaltered and shifts its high affinity ATP-binding site to a Na+-like form. Eur J Biochem 193:355–360. doi:10.1111/j.1432-1033.1990.tb19346.x

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum E, Schoner W (1991) Phosphate binding and ATP-binding sites coexist in Na+/K+-transporting ATPase, as demonstrated by the inactivating MgPO4 complex analogue Co(NH3)4PO4. Eur J Biochem 195:407–419. doi:10.1111/j.1432-1033.1991.tb15720.x

    Article  PubMed  CAS  Google Scholar 

  • Cable MB, Briggs FN (1988) Allosteric regulation of cardiac sarcoplasmic reticulum Ca-ATPase: a comparative study. Mol Cell Biochem 82:29–36. doi:10.1007/BF00242512

    Article  PubMed  CAS  Google Scholar 

  • Cable MB, Feher JJ, Briggs FN (1985) Mechanism of allosteric regulation of the Ca, Mg-ATPase of sarcoplasmic reticulum: studies with 5′-adenylyl methylenediphosphate. Biochemistry 24:5612–5619. doi:10.1021/bi00341a049

    Article  PubMed  CAS  Google Scholar 

  • Champeil P, Guillain F (1986) Rapid filtration of the phosphorylation-dependent dissociation of calcium from transport sites of purified sarcoplasmic reticulum ATPase and ATP modulation of the catalytic cycle. Biochemistry 25:7623–7633. doi:10.1021/bi00371a053

    Article  PubMed  CAS  Google Scholar 

  • Champeil P, Riollet S, Orlowski S, Guillain F, Seebregts CJ, McIntosh DB (1988) ATP regulation of sarcoplasmic reticulum Ca2+-ATPase. Metal-free ATP and 8-bromo-ATP bind with high affinity to the catalytic site of phosphorylated ATPase and accelerate dephosphorylation. J Biol Chem 263:12288–12294

    PubMed  CAS  Google Scholar 

  • Clarke RJ, Kane DJ (2007) Two gears of ion pumping by the Na+,K+-ATPase. Biophys J 93:4187–4196. doi:10.1529/biophysj.107.111591

    Article  PubMed  CAS  Google Scholar 

  • Clarke RJ, Kane DJ, Apell H-J, Roudna M, Bamberg E (1998) Kinetics of Na+-dependent conformational changes of rabbit kidney Na+,K+-ATPase. Biophys J 75:1340–1353

    Article  PubMed  CAS  Google Scholar 

  • Clarke RJ, Apell H-J, Kong BY (2007) Allosteric effect of ATP on Na+,K+-ATPase conformational kinetics. Biochemistry 46:7034–7044. doi:10.1021/bi700619s

    Article  PubMed  CAS  Google Scholar 

  • Cornelius F (1995) Phosphorylation/dephosphorylation of reconstituted shark Na+,K+-ATPase: one phosphorylation site per αβ protomer. Biochim Biophys Acta 1235:197–204. doi:10.1016/0005-2736(95)80005-Z

    Article  PubMed  Google Scholar 

  • Cornelius F (1999) Rate determination in phosphorylation of shark rectal Na,K-ATPase by ATP: temperature sensitivity and effects of ADP. Biophys J 77:934–942

    Article  PubMed  CAS  Google Scholar 

  • Cornelius F, Fedosova NU, Klodos I (1998) E2P phosphoforms of Na,K-ATPase. II. Interaction of substrate and cation-binding sites in Pi phosphorylation of Na,K-ATPase. Biochemistry 37:16686–16696. doi:10.1021/bi981571v

    Article  PubMed  CAS  Google Scholar 

  • Domaszewicz W, Apell HJ (1999) Binding of the third Na+ ion to the cytoplasmic side of the Na,K-ATPase is electrogenic. FEBS Lett 458:241–246. doi:10.1016/S0014-5793(99)01162-X

    Article  PubMed  CAS  Google Scholar 

  • Donnet C, Arystarkhova E, Sweadner KJ (2001) Thermal denaturation of the Na,K-ATPase provides evidence for α-α oligomeric interaction and γ subunit association with the C-terminal domain. J Biol Chem 276:7357–7365. doi:10.1074/jbc.M009131200

    Article  PubMed  CAS  Google Scholar 

  • Esmann M (1984) The distribution of C12E8-solubilized oligomers of the (Na+ + K+)-ATPase. Biochim Biophys Acta 787:81–89

    PubMed  CAS  Google Scholar 

  • Esmann M, Fedosova NU, Marsh D (2008) Osmotic stress and viscous retardation of the Na,K-ATPase ion pump. Biophys J 94:2767–2776. doi:10.1529/biophysj.106.101774

    Article  PubMed  CAS  Google Scholar 

  • Fedosova NU, Champeil P, Esmann M (2003) Rapid filtration analysis of nucleotide binding to Na,K-ATPase. Biochemistry 42:3536–3543. doi:10.1021/bi0268302

    Article  PubMed  CAS  Google Scholar 

  • Fendler K, Jaruschewski S, Hobbs A, Albers W, Froehlich JP (1993) Pre-steady state charge translocation in NaK-ATPase from eel electric organ. J Gen Physiol 102:631–666. doi:10.1085/jgp.102.4.631

    Article  PubMed  CAS  Google Scholar 

  • Forbush BIII (1987) Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP. J Biol Chem 262:11104–11115

    PubMed  CAS  Google Scholar 

  • Forbush BIII, Klodos I (1991) Rate-limiting steps in Na translocation by the Na/K pump. In: Kaplan JH, DeWeer P (eds) The sodium pump: structure, mechanism and regulation. Rockefeller University Press, New York, pp 211–225

    Google Scholar 

  • Frank J, Zouni A, van Hoek A, Visser AJWG, Clarke RJ (1996) Interaction of the fluorescent probe RH421 with ribulose-1, 5-bisphosphate carboxylase/oxygenase and with Na+,K+-ATPase membrane fragments. Biochim Biophys Acta 1280:51–64. doi:10.1016/0005-2736(95)00277-4

    Article  PubMed  Google Scholar 

  • Friedrich T, Bamberg E, Nagel G (1996) Na+,K+-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys J 71:2486–2500

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JP, Hobbs AS, Albers RW (1983) Evidence for parallel pathways of phosphoenzyme formation in the mechanism of ATP hydrolysis by electrophorus Na,K-ATPase. Curr Top Membr Transp 19:513–535

    CAS  Google Scholar 

  • Froehlich JP, Taniguchi K, Fendler K, Mahaney JE, Thomas DD, Albers RW (1997) Complex kinetic behaviour in the Na,K- and Ca-ATPases. Evidence for subunit-subunit interactions and energy conversion during catalysis. Ann N Y Acad Sci 834:280–296. doi:10.1111/j.1749-6632.1997.tb52259.x

    Article  PubMed  CAS  Google Scholar 

  • González-Lebrero RM, Kaufman SB, Montes MR, Nørby JG, Garrahan PJ, Rossi RC (2002) The occlusion of Rb+ in the Na+/K+-ATPase. J Biol Chem 277:5910–5921. doi:10.1074/jbc.M105886200

    Article  PubMed  CAS  Google Scholar 

  • Grell E, Lewitzki E, Schacht A, Stolz M (2004) Nucleotide/protein interaction. Energetic and structural features of Na,K-ATPase. J Therm Anal Calorim 77:471–481. doi:10.1023/B:JTAN.0000038987.75618.33

    Article  CAS  Google Scholar 

  • Gribble FM, Loussouarn G, Tucker SJ, Zhao C, Nichols CG, Ashcroft FM (2000) A novel method for measurement of submembrane ATP concentration. J Biol Chem 39:30046–30049. doi:10.1074/jbc.M001010200

    Article  Google Scholar 

  • Hamer E, Schoner W (1993) Modification of the E1ATP binding site of Na+/K+-ATPase by the chromium complex of adenosine 5′-[β, γ-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation. Eur J Biochem 213:743–748. doi:10.1111/j.1432-1033.1993.tb17815.x

    Article  PubMed  CAS  Google Scholar 

  • Heegaard CW, le Maire M, Gulik-Krzywicki T, Møller JV (1990) Monomeric state and Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase, reconstituted with an excess of phospholipid. J Biol Chem 265:12020–12028

    PubMed  CAS  Google Scholar 

  • Hegyvary C, Post RL (1971) Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J Biol Chem 246:5234–5240

    PubMed  CAS  Google Scholar 

  • Humphrey PA, Lüpfert C, Apell H-J, Cornelius F, Clarke RJ (2002) Mechanism of the rate-determining step of the Na+,K+-ATPase. Biochemistry 41:9496–9507. doi:10.1021/bi025836o

    Article  PubMed  CAS  Google Scholar 

  • Inesi G, Toyoshima C (2004) Catalytic and transport mechanism of the sarco-(endo)plasmic reticulum Ca2+-ATPase (SERCA). In: Futai F, Wada Y, Kaplan JH (eds) Handbook of ATPases. Biochemistry, cell biology, pathophysiology. Wiley-VCH, Weinheim, pp 63–87

    Google Scholar 

  • Jensen A-ML, Sørensen TL-M, Olesen C, Møller JV, Nissen P (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25:2305–2314. doi:10.1038/sj.emboj.7601135

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen PL, Andersen JP (1988) Structural basis for E1–E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol 103:95–120. doi:10.1007/BF01870942

    Article  PubMed  Google Scholar 

  • Kane DJ, Fendler K, Grell E, Bamberg E, Taniguchi K, Froehlich JP, Clarke RJ (1997) Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry 36:13406–13420. doi:10.1021/bi970598w

    Article  PubMed  CAS  Google Scholar 

  • Kane DJ, Grell E, Bamberg E, Clarke RJ (1998) Dephosphorylation kinetics of pig kidney Na+,K+-ATPase. Biochemistry 37:4581–4591. doi:10.1021/bi972813e

    Article  PubMed  CAS  Google Scholar 

  • Karlish SJD, Yates DW (1978) Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta 527:115–130

    PubMed  CAS  Google Scholar 

  • Karlish SJD, Yates DW, Glynn IM (1976) Transient kinetics of (Na+ + K+)-ATPase studied with a fluorescent substrate. Nature 264:251–253. doi:10.1038/263251a0

    Article  Google Scholar 

  • Karlish SJD, Yates DW, Glynn IM (1978) Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formycin nucleotides. Biochim Biophys Acta 525:252–264

    PubMed  CAS  Google Scholar 

  • Klein MG, Kovacs L, Simon BJ, Schneider MF (1991) Decline of myoplasmic Ca2+, recovery of calcium release and sarcoplasmic Ca2+ pump properties in frog skeletal muscle. J Physiol 414:639–671

    Google Scholar 

  • Klodos I (1994) Partial reactions in Na+/K+- and H+/K+-ATPase studied with voltage-sensitive fluorescent dyes. In: Bamberg E, Schoner W (eds) The sodium pump. Steinkopff Verlag, Darmstadt, pp 517–528

    Google Scholar 

  • Kobayashi T, Tahara Y, Takenaka H, Mimura K, Hayashi Y (2007) Na+- and K+-dependent oligomeric interconversion among αβ-protomers, diprotomers and higher oligomers in solubilized Na+/K+-ATPase. J Biochem 142:157–173. doi:10.1093/jb/mvm150

    Article  PubMed  CAS  Google Scholar 

  • Kong BY, Clarke RJ (2004) Identification of potential regulatory sites of the Na+,K+-ATPase by kinetic analysis. Biochemistry 43:2241–2250. doi:10.1021/bi0355443

    Article  PubMed  CAS  Google Scholar 

  • Kutchai H, Mahaney JE, Geddis LM, Thomas DD (1994) Hexanol and lidocaine affect the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum. Biochemistry 33:13208–13222. doi:10.1021/bi00249a007

    Article  PubMed  CAS  Google Scholar 

  • Kutchai H, Geddis LM, Jones LR, Thomas DD (1998) Differential effects of general anesthetics on the quaternary structure of Ca-ATPases of cardiac and skeletal sarcoplasmic reticulum. Biochemistry 37:2410–2421. doi:10.1021/bi9722002

    Article  PubMed  CAS  Google Scholar 

  • Linnertz H, Urbanova P, Obsil T, Herman P, Amler E, Schoner W (1998) Molecular distance measurements reveal an (αβ)2 dimeric structure of Na+,K+-ATPase. High affinity ATP binding site and K+-activated phosphatase reside on different α-subunits. J Biol Chem 273:28813–28821. doi:10.1074/jbc.273.44.28813

    Article  PubMed  CAS  Google Scholar 

  • Lüpfert C, Grell E, Pintschovius V, Apell H-J, Cornelius F, Clarke RJ (2001) Rate limitation of the Na+,K+-ATPase pump cycle. Biophys J 81:2069–2081

    Article  PubMed  Google Scholar 

  • Mahaney JE, Thomas DD, Froehlich JP (2004) The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Biochemistry 43:4400–4416. doi:10.1021/bi035068g

    Article  PubMed  CAS  Google Scholar 

  • Mahaney JE, Thomas DD, Farrance IK, Froehlich JP (2008) Intermolecular interactions in the mechanism of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA1): evidence for a tri-protomer. Biochemistry 47:13711–13725

    Article  PubMed  CAS  Google Scholar 

  • Martin DW, Sachs JR (1999) Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites. Biochemistry 38:7485–7497. doi:10.1021/bi983019b

    Article  PubMed  CAS  Google Scholar 

  • Martin DW, Sachs JR (2000) Ligands presumed to label high affinity and low affinity ATP binding sites do not interact in an (αβ)2 diprotomer in duck nasal gland Na+,K+-ATPase, nor do the sites coexist in native enzyme. J Biol Chem 275:24512–24517. doi:10.1074/jbc.M003179200

    Article  PubMed  CAS  Google Scholar 

  • Martin DW, Maracek J, Scarlata S, Sachs JR (2000) αβ Protomers of Na+,K+-ATPase from microsomes of duck salt gland are mostly monomeric: formation of higher oligomers does not modify molecular activity. Proc Natl Acad Sci USA 97:3195–3200. doi:10.1073/pnas.050558397

    Article  PubMed  CAS  Google Scholar 

  • Mimura K, Tahara Y, Shinji N, Tokuda E, Takenaka H, Hayashi Y (2008) Isolation of stable (αβ)4-tetraprotomer from Na+/K+-ATPase solubilized in the presence of short-chain fatty acids. Biochemistry 47:6039–6051. doi:10.1021/bi800445f

    Article  PubMed  CAS  Google Scholar 

  • Møller JV, Lind KE, Andersen JP (1980) Enzyme kinetics and substrate stabilization of detergent-solubilized and membranous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum. Effect of protein-protein interactions. J Biol Chem 255:1912–1920

    PubMed  Google Scholar 

  • Montes MR, González-Lebrero RM, Garrahan PJ, Rossi RC (2004) Quantitative analysis of the interaction between the fluorescent probe eosin and the Na+,K+-ATPase studied through Rb+ occlusion. Biochemistry 43:2062–2069. doi:10.1021/bi0351763

    Article  PubMed  CAS  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL-M, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1050. doi:10.1038/nature06419

    Article  PubMed  CAS  Google Scholar 

  • Nørby JG, Jensen J (1971a) Binding of ATP to brain microsomal ATPase. Determination of the ATP binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+ concentration. Biochim Biophys Acta 233:104–116. doi:10.1016/0005-2736(71)90362-2

    Article  PubMed  Google Scholar 

  • Nørby JG, Jensen J (1971b) Functional significance of the oligomeric structure of the Na,K-pump from radiation inactivation and ligand binding. In: Kaplan JH, De Weer P (eds) The sodium pump: structure, mechanism, and regulation. Rockefeller University Press, New York, pp 173–188

    Google Scholar 

  • Olesen C, Sørensen TL-M, Nielsen RC, Møller JV, Nissen P (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–2255. doi:10.1126/science.1106289

    Article  PubMed  CAS  Google Scholar 

  • Olesen C, Picard M, Winther A-ML, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissan P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1044. doi:10.1038/nature06418

    Article  PubMed  CAS  Google Scholar 

  • Palladino MJ, Bower JE, Kreber R, Ganetzky B (2003) Neural dysfunction and neurodegeneration in Drosophila Na+/K+-ATPase alpha subunit mutants. J Neurosci 23:1276–1286

    PubMed  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845. doi:10.1146/annurev.arplant.52.1.817

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissan P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1115. doi:10.1038/nature06417

    Article  PubMed  CAS  Google Scholar 

  • Peluffo RD, Garrahan PJ, Rega AF (1992) Low affinity superphosphorylation of the Na,K-ATPase by ATP. J Biol Chem 267:6596–6601

    PubMed  CAS  Google Scholar 

  • Peters WHM, Swarts HGP, de Pont JJHHM, Schuurmans Stekhoven FMAH, Bonting SL (1981) (Na+ + K+)ATPase has one functioning phosphorylation site per α subunit. Nature 290:338–339. doi:10.1038/290338a0

    Article  PubMed  CAS  Google Scholar 

  • Pilotelle-Bunner A, Matthews JM, Cornelius F, Apell H-J, Sebban P, Clarke RJ (2008) ATP binding equilibria of the Na+,K+-ATPase. Biochemistry 47:13103–13114. doi:10.1021/bi801593g

    Article  PubMed  CAS  Google Scholar 

  • Plesner IW (1987) Application of the theory of enzyme subunit interactions to ATP-hydrolyzing enzymes. The case of Na,K-ATPase. Biophys J 51:69–78

    Article  PubMed  CAS  Google Scholar 

  • Plesner IW, Plesner L, Nørby JG, Klodos I (1981) The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model. Biochim Biophys Acta 643:483–494. doi:10.1016/0005-2736(81)90090-0

    Article  PubMed  CAS  Google Scholar 

  • Post RL, Hegyvary C, Kume S (1972) Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem 247:6530–6540

    PubMed  CAS  Google Scholar 

  • Pratap PR, Palit A, Grassi-Nemeth E, Robinson JD (1996) Kinetics of conformational changes associated with potassium binding to and release from Na+/K+-ATPase. Biochim Biophys Acta 1285:203–211. doi:10.1016/S0005-2736(96)00162-9

    Article  PubMed  CAS  Google Scholar 

  • Reenstra WW, Bettencourt JD, Forte JG (1988) Kinetic studies of the gastric H,K-ATPase. Evidence for simultaneous binding of ATP and inorganic phosphate. J Biol Chem 263:19618–19625

    PubMed  CAS  Google Scholar 

  • Repke KRH, Schön R (1973) Flip-flop model of (NaK)-ATPase function. Acta Biol Med Ger 31:K19–K30

    PubMed  Google Scholar 

  • Roberts G, Beaugé L (1997) Complex ATP-activation kinetics of plant H+-transporting ATPase may or may not require two substrate sites. Eur J Biochem 246:228–232. doi:10.1111/j.1432-033.1997.00228.x

    Article  PubMed  CAS  Google Scholar 

  • Scheiner-Bobis G (2002) The sodium pump. Its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433. doi:10.1046/j.1432-1033.2002.02909.x

    Article  PubMed  CAS  Google Scholar 

  • Scheiner-Bobis G, Fahlbusch K, Schoner W (1987) Demonstration of cooperating α subunits in working (Na+ + K+)-ATPase by the use of the MgATP complex analogue cobalt tetraammine ATP. Eur J Biochem 168:123–131. doi:10.1111/j.1432-1033.1987.tb13396.x

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger A, Apell HJ (2001) Ion selectivity of the cytoplasmic binding sites of the Na,K-ATPase: II. Competition of various cations. J Membr Biol 179:263–273. doi:10.1007/s002320010051

    Article  PubMed  CAS  Google Scholar 

  • Schoner W, Mertens W, Helms M, Fortes G (1998) Binding of the Co(NH3)4 derivative of (2′)3′-O-[N-methyl-anthraniloyl]-ATP to the E2ATP site of Na+/K+-transporting ATPase lowers the conformational flexibility of its E1ATP site. Eur J Biochem 253:245–250. doi:10.1046/j.1432-1327.1998.2530245.x

    Article  PubMed  CAS  Google Scholar 

  • Shin JM, Vagin O, Munson K, Sachs G (2004) Gastric H+,K+-ATPase. In: Futai F, Wada Y, Kaplan JH (eds) Handbook of ATPases. Biochemistry, cell biology, pathophysiology. Wiley-VCH, Weinheim, pp 179–209

    Google Scholar 

  • Shin JM, Grundler G, Senn-Bilfinger J, Simon WA, Sachs G (2005) Functional consequences of the oligomeric form of the membrane-bound gastric H,K-ATPase. Biochemistry 44:16321–16332. doi:10.1021/bi051342q

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401. doi:10.1016/0006-3002(57)90343-8

    Article  PubMed  CAS  Google Scholar 

  • Skriver E, Maunsbach AB, Hebert H, Scheiner-Bobis G, Schoner W (1989) Two-dimensional crystalline arrays of Na,K-ATPase with new subunit interactions induced by cobalt-tetrammine-ATP. J Ultrastruct Mol Struct Res 102:189–195. doi:10.1016/0889-1605(89)90013-X

    Article  PubMed  CAS  Google Scholar 

  • Sørensen TL-M, Møller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675. doi:10.1126/science.1099366

    Article  PubMed  CAS  Google Scholar 

  • Stein WD, Lieb WR, Karlish SJD, Eilam Y (1973) A model for active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc Natl Acad Sci USA 70:275–278. doi:10.1073/pnas.70.1.275

    Article  PubMed  CAS  Google Scholar 

  • Steinberg M, Karlish SJD (1989) Studies of conformational changes in Na,K-ATPase labeled with 5-iodoacetamidofluorescein. J Biol Chem 264:2726–2734

    PubMed  CAS  Google Scholar 

  • Stürmer W, Bühler R, Apell H-J, Läuger P (1991) Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J Membr Biol 121:163–176. doi:10.1007/BF01870530

    Article  PubMed  Google Scholar 

  • Taniguchi K, Kaya S, Abe K, Mårdh S (2001) The oligomeric nature of Na/K-transport ATPase. J Biochem 129:335–342

    PubMed  CAS  Google Scholar 

  • Tanoue K, Kaya S, Hayashi Y, Abe K, Imagawa T, Taniguchi K, Sakaguchi K (2006) New evidence for ATP binding induced catalytic subunit interactions in pig kidney Na/K-ATPase. J Biochem 140:599–607. doi:10.1093/jb/mvj191

    Article  PubMed  CAS  Google Scholar 

  • Thoenges D, Schoner W (1997) 2′-O-Dansyl analogs of ATP bind with high affinity to the low affinity ATP site of Na+/K+-ATPase and reveal the interaction of two ATP sites during catalysis. J Biol Chem 272:16315–16321. doi:10.1074/jbc.272.26.16315

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476:3–11. doi:10.1016/j.abb.2008.04.017

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535. doi:10.1038/nature02680

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611. doi:10.1038/nature00944

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655. doi:10.1038/35015017

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–368. doi:10.1038/nature02981

    Article  PubMed  CAS  Google Scholar 

  • Tsuda T, Kaya S, Yokoyama T, Hayashi Y, Taniguchi K (1998) ATP and acetyl phosphate induces molecular events near the ATP binding site and the membrane domain of Na+,K+-ATPase. The tetrameric nature of the enzyme. J Biol Chem 273:24339–24345. doi:10.1074/jbc.273.38.24339

    Article  PubMed  CAS  Google Scholar 

  • Vilsen B, Andersen JP, Petersen J, Jørgensen PL (1987) Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric αβ-units of Na,K-ATPase. J Biol Chem 262:10511–10517

    PubMed  CAS  Google Scholar 

  • Ward DG, Cavieres JD (1996) Binding of 2′(3′)-O-(2, 4, 6-trinitrophenyl)ADP to soluble αβ protomers of Na,K-ATPase modified with fluorescein isothiocyanate. Evidence for two distinct nucleotide sites. J Biol Chem 271:12317–12321. doi:10.1074/jbc.271.21.12317

    Article  PubMed  CAS  Google Scholar 

  • Ward DG, Cavieres JD (2003) Inactivation of Na,K-ATPase following Co(NH3)4ATP binding at a low affinity site in the protomeric enzyme unit. J Biol Chem 278:14688–14697. doi:10.1074/jbc.M211128200

    Article  PubMed  CAS  Google Scholar 

  • Ward DG, Taylor M, Lilley KS, Cavieres JD (2006) TNP-8N3-ADP photoaffinity labeling of two Na,K-ATPase sequences under separate Na+ plus K+ control. Biochemistry 45:3460–3471. doi:10.1021/bi051927k

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama T, Kaya S, Abe K, Taniguchi K, Katoh T, Yazawa M, Hayashi Y, Mårdh S (1999) Acid-labile ATP and/or ADP/Pi binding to the tetraprotomeric form of Na/K-ATPase accompanying catalytic phosphorylation-dephosphorylation cycle. J Biol Chem 274:31792–31796. doi:10.1074/jbc.274.45.31792

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Professor Wilhelm Schoner for valuable discussions, Dr. Claus Olesen for kindly providing images of Ca2+-ATPase structures and the Australian Research Council/National Health and Medical Research Council funded Research Network “Fluorescence Applications in Biotechnology and the Life Sciences” (RN0460002) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald James Clarke.

Additional information

“Proteins, membranes and cells: the structure–function nexus”. Contributions from the annual scientific meeting (including a special symposium in honour of Professor Alex Hope of Flinders University, South Australia) of the Australian Society for Biophysics held in Canberra, ACT, Australia, September 28–October 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, R.J. Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. Eur Biophys J 39, 3–17 (2009). https://doi.org/10.1007/s00249-009-0407-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0407-3

Keywords

Navigation