Skip to main content
Log in

Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation techniques have been used to study the unbinding pathways of 1α,25-dihydroxyvitamin D3 from the ligand-binding pocket of the vitamin D receptor (VDR). The pathways observed in a large number of relatively short (<200 ps) random acceleration molecular dynamics (RAMD) trajectories were found to be in fair agreement, both in terms of pathway locations and deduced relative preferences, compared to targeted molecular dynamics (TMD) and streered molecular dynamics simulations (SMD). However, the high-velocity ligand expulsions of RAMD tend to favor straight expulsion trajectories and the observed relative frequencies of different pathways were biased towards the probability of entering a particular exit channel. Simulations indicated that for VDR the unbinding pathway between the H1–H2 loop and the β-sheet between H5 and H6 is more favorable than the pathway located between the H1–H2 loop and H3. The latter pathway has been suggested to be the most likely unbinding path for thyroid hormone receptors (TRs) and a likely path for retinoic acid receptor. Ligand entry/exit through these two pathways would not require displacement of H12 from its agonistic position. Differences in the packing of the H1, H2, H3 and β-sheet region explain the changed relative preference of the two unbinding pathways in VDR and TRs. Based on the crystal structures of the ligand binding domains of class 2 nuclear receptors, whose members are VDR and TRs, this receptor class can be divided in two groups according to the packing of the H1, H2, H3 and β-sheet region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aird A, Wrachtrup J, Schulten K, Tietz C (2007) Possible pathway for ubiquinone shuttling in rhodospirillum rubrum revealed by molecular dynamics simulation. Biophys J 92:23–33. doi:10.1529/biophysj.106.084715

    Article  PubMed  CAS  Google Scholar 

  • Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT (2007) Nuclear receptor structure: implications for function. Annu Rev Physiol 69:201–220. doi:10.1146/annurev.physiol.69.031905.160308

    Article  PubMed  CAS  Google Scholar 

  • Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp model. J Phys Chem 97:10269–10280. doi:10.1021/j100142a004

    Article  CAS  Google Scholar 

  • Berger JP, Petro AE, Macnaul KL, Kelly LJ, Zhang BB, Richards K et al (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein gamma selective modulator. Mol Endocrinol 17:662–676. doi:10.1210/me.2002-0217

    Article  PubMed  CAS  Google Scholar 

  • Blondel A, Renaud JP, Fischer S, Moras D, Karplus M (1999) Retinoic acid receptor: a simulation analysis of retinoic acid binding and the resulting conformational changes. J Mol Biol 291:101–115. doi:10.1006/jmbi.1999.2879

    Article  PubMed  CAS  Google Scholar 

  • Bruning JB, Chalmers MJ, Prasad S, Busby SA, Karnenecka TM, He YJ et al (2007) Partial agonists activate PPAR gamma using a helix 12 independent mechanism. Structure 15:1258–1271. doi:10.1016/j.str.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P, Burendahl S, Nilsson L (2006) Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics. Biophys J 91:3151–3161. doi:10.1529/biophysj.106.082917

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TA III, Simmerling CL, Wang J, Duke RE, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870. doi:10.1126/science.294.5548.1866

    Article  PubMed  CAS  Google Scholar 

  • Chrencik JE, Orans J, Moore LB, Xue Y, Peng L, Collins JL et al (2005) Structural disorder in the complex of human pregnane X receptor and the macrolide antibiotic rifampicin. Mol Endocrinol 19:1125–1134. doi:10.1210/me.2004-0346

    Article  PubMed  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM et al (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197. doi:10.1021/ja00124a002

    Article  CAS  Google Scholar 

  • DeLano Scientific (2008) The PyMOL molecular graphics system, Palo Alto, CA

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. doi:10.1002/jcc.10349

    Article  PubMed  CAS  Google Scholar 

  • Einstein M, Akiyama TE, Castriota GA, Wang CF, McKeewer B, Mosley RT et al (2008) The differential interactions of peroxisome profilerator-activated receptor γ ligands with tyr473 is a physical basis for their unique biological activities. Mol Pharmacol 73:62–74. doi:10.1124/mol.107.041202

    Article  PubMed  CAS  Google Scholar 

  • Escriva H, Delaunay F, Laudet V (2000) Ligand binding and nuclear receptor evolution. Bioessays 22:717–727 doi :10.1002/1521-1878(200008)22:8<717::AID-BIES5>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) Gaussian 03, Revision B.04. Gaussian, Inc, Wellingford

    Google Scholar 

  • Genest D, Garnier N, Arrault A, Marot C, Morin-Allory L, Genest M (2008) Ligand-escape pathways from the ligand-binding domain of PPAR gamma receptor as probed by molecular dynamics simulations. Eur Biophys J 37:369–379. doi:10.1007/s00249-007-0220-9

    Article  PubMed  CAS  Google Scholar 

  • Gullingsrud JR, Braun R, Schulten K (1999) Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J Comput Phys 151:190–211. doi:10.1006/jcph.1999.6218

    Article  CAS  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. doi:10.1002/prot.21123

    Article  PubMed  CAS  Google Scholar 

  • Hourai S, Fujishima T, Kittaka A, Suhara Y, Takayama H, Rochel N et al (2006) Probing a water channel near the A-ring of receptor-bound 1 alpha, 25-dihydroxyvitamin D3 with selected 2 alpha-substituted analogues. J Med Chem 49:5199–5205. doi:10.1021/jm0604070

    Article  PubMed  CAS  Google Scholar 

  • Huber BR, Desclozeaux M, West BL, Cunha-Lima ST, Nguyen HT, Baxter JD et al (2003) Thyroid hormone receptor-beta mutations conferring hormone resistance and reduced corepressor release exhibit decreased stability in the N-terminal ligand-binding domain. Mol Endocrinol 17:107–116. doi:10.1210/me.2002-0097

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  PubMed  CAS  Google Scholar 

  • Hurth KM, Nilges MJ, Carlson KE, Tamrazi A, Belford RL, Katzenellenbogen JA (2004) Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry 43:1891–1907. doi:10.1021/bi035566p

    Article  PubMed  CAS  Google Scholar 

  • Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230. doi:10.1016/S0959-440X(00)00194-9

    Article  PubMed  CAS  Google Scholar 

  • Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F et al (1998) Steered molecular dynamics. In: Deuflhard P, Hermans K, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) Computational molecular dynamics: challenges, methods, ideas, vol 4. Springer, Berlin, pp 39–65

    Google Scholar 

  • Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693. doi:10.1103/PhysRevLett.78.2690

    Article  CAS  Google Scholar 

  • Jurutka PW, Thompson PD, Whitfield GK, Eichhorst KR, Hall N, Dominguez CE et al (2005) Molecular and functional comparison of 1, 25-dihydroxyvitamin D-3 and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4. J Cell Biochem 94:917–943. doi:10.1002/jcb.20359

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA, Wilson EM, Li Y, Moller DE, Smith RG, Zhou GC (2000) Ligand-induced stabilization of PPAR gamma monitored by NMR spectroscopy: Implications for nuclear receptor activation. J Mol Biol 298:187–194. doi:10.1006/jmbi.2000.3636

    Article  PubMed  CAS  Google Scholar 

  • Kallenberger BC, Love JD, Chatterjee VKK, Schwabe JWR (2003) A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat Struct Biol 10:136–140. doi:10.1038/nsb892

    Article  PubMed  CAS  Google Scholar 

  • Kosztin D, Izrailev S, Schulten K (1999) Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys J 76:188–197

    Article  PubMed  CAS  Google Scholar 

  • Lau AY, Roux B (2007) The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 15:1203–1214. doi:10.1016/j.str.2007.07.015

    Article  PubMed  CAS  Google Scholar 

  • Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19:207–226. doi:10.1677/jme.0.0190207

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lambert MH, Xu HE (2003) Activation of nuclear receptors: a perspective from structural genomics. Structure 11:741–746. doi:10.1016/S0969-2126(03)00133-3

    Article  PubMed  CAS  Google Scholar 

  • Ludemann SK, Carugo O, Wade RC (1997) Substrate access to Cytochrome P450cam: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J Mol Model 3:369–374. doi:10.1007/s008940050053

    Article  CAS  Google Scholar 

  • Ludemann SK, Lounnas V, Wade RC (2000) How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303:797–811. doi:10.1006/jmbi.2000.4154

    Article  PubMed  CAS  Google Scholar 

  • Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316. doi:10.1126/science.1070477

    Article  PubMed  CAS  Google Scholar 

  • Margeat E, Bourdoncle A, Margueron R, Poujol N, Cavailles V, Royer C (2003) Ligands differentially modulate the protein interactions of the human estrogen receptors alpha and beta. J Mol Biol 326:77–92. doi:10.1016/S0022-2836(02)01355-4

    Article  PubMed  CAS  Google Scholar 

  • Martínez L, Sonoda MT, Webb P, Baxter JD, Skaf MS, Polikarpov I (2005) Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors. Biophys J 89:2011–2023. doi:10.1529/biophysj.105.063818

    Article  PubMed  CAS  Google Scholar 

  • Martínez L, Webb P, Polikarpov I, Skaf MS (2006) Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors: evidence of the likeliest escape pathway and its implications for the design of novel ligands. J Med Chem 49:23–26. doi:10.1021/jm050805n

    Article  PubMed  CAS  Google Scholar 

  • Mizwicki MT, Keidel D, Bula CM, Bishop JE, Zanello LP, Wurtz JM et al (2004) Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1 alpha, 25(OH)(2)-vitamin D-3 signaling. Proc Natl Acad Sci USA 101:12876–12881. doi:10.1073/pnas.0403606101

    Article  PubMed  CAS  Google Scholar 

  • Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10:384–391. doi:10.1016/S0955-0674(98)80015-X

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Schwabe JWR (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29:317–324. doi:10.1016/j.tibs.2004.04.006

    Article  PubMed  CAS  Google Scholar 

  • Nettles KW, Sun J, Radek JT, Sheng SB, Rodriguez AL, Katzenellenbogen JA et al (2004) Allosteric control of ligand selectivity between estrogen receptors alpha and beta: implications for other nuclear receptors. Mol Cell 13:317–327. doi:10.1016/S1097-2765(04)00054-1

    Article  PubMed  CAS  Google Scholar 

  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143. doi:10.1038/25931

    Article  PubMed  CAS  Google Scholar 

  • Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276:36863–36864. doi:10.1074/jbc.R100047200

    Article  PubMed  CAS  Google Scholar 

  • Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:3559–3566. doi:10.1063/1.1590311

    Article  CAS  Google Scholar 

  • Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5:173–179. doi:10.1016/S1097-2765(00)80413-X

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  • Schleinkofer K, Sudarko, Winn PJ, Ludemann SK, Wade RC (2005) Do mammalian cytochrome P450 s show multiple ligand access pathways and ligand channelling? EMBO Rep 6:584–589. doi:10.1038/sj.embor.7400420

    Article  PubMed  CAS  Google Scholar 

  • Schlitter J, Engels M, Kruger P (1994) Targeted molecular-dynamics—a new approach for searching pathways of conformational transitions. J Mol Graph 12:84–89. doi:10.1016/0263-7855(94)80072-3

    Article  PubMed  CAS  Google Scholar 

  • Schlitter J, Engels M, Kruger P, Jacoby E, Wollmer A (1993) Targeted molecular-dynamics simulation of conformational change—application to the T↔R transition in insulin. Mol Simul 10:291–308. doi:10.1080/08927029308022170

    Article  CAS  Google Scholar 

  • Shiau AK, Barstad D, Radek JT, Meyers MJ, Nettles KW, Katzenellenbogen BS et al (2002) Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol 9:359–364

    PubMed  CAS  Google Scholar 

  • Sonoda MT, Martínez L, Webb P, Skaf MS, Polikarpov I (2008) Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Mol Endocrinol 22:1565–1578. doi:10.1210/me.2007-0501

    Article  PubMed  CAS  Google Scholar 

  • Tocchini-Valentini G, Rochel N, Wurtz JM, Mitschler A, Moras D (2001) Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA 98:5491–5496. doi:10.1073/pnas.091018698

    Article  PubMed  CAS  Google Scholar 

  • Väisänen S, Rouvinen J, Mäenpää PH (1998) Putative helices 3 and 5 of the human vitamin D3 receptor are important for the binding of calcitriol. FEBS Lett 440:203–307. doi:10.1016/S0014-5793(98)01436-7

    Article  PubMed  Google Scholar 

  • Väisänen S, Peräkylä M, Kärkkäinen JI, Steinmeyer A, Carlberg C (2002) Critical role of helix 12 of the vitamin D3 receptor for the partial agonism of carboxylic ester antagonists. J Mol Biol 315:229–238. doi:10.1006/jmbi.2001.5225

    Article  PubMed  CAS  Google Scholar 

  • Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ (1995) A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697. doi:10.1038/378690a0

    Article  PubMed  CAS  Google Scholar 

  • Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

    Article  CAS  Google Scholar 

  • Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Duan Y (2007) Chromophore channeling in the G-protein coupled receptor rhodopsin. J Am Chem Soc 129:6970–6971. doi:10.1021/ja0691977

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, Crespo A, Marti M, Estrin D, Roitberg AE (2006) Free energy calculations with non-equilibrium methods: applications of the Jarzynski relationship. Theor Chem Acc 116:338–346. doi:10.1007/s00214-005-0072-2

    Article  CAS  Google Scholar 

  • Yamamoto K, Abe D, Yoshimoto N, Choi M, Yamagishi K, Tokiwa H et al (2006) Vitamin D receptor: ligand recognition and allosteric network. J Med Chem 49:1313–1324. doi:10.1021/jm050795q

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZD, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu JQ et al (2004) Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res 14:580–590. doi:10.1101/gr.2160004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Peräkylä.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (DOC 31912 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peräkylä, M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. Eur Biophys J 38, 185–198 (2009). https://doi.org/10.1007/s00249-008-0369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0369-x

Keywords

Navigation