Skip to main content
Log in

The influence of curvature on membrane domains

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

An interdependence between local curvature and domain formation has been observed in both cell and model membranes. An implication of this observation is that domain formation in model membranes may be modulated by membrane curvature. In this paper, small-angle neutron scattering (SANS) is used to examine the influence of membrane curvature (i.e., vesicle size) on the formation of membrane domains. It is found that, although vesicle size and polydispersity are not significantly altered by the formation of membrane domains, the area fraction occupied by domains depends on the overall vesicle size. In particular, increasing membrane curvature (i.e., decreasing vesicle size) results in increased area fractions of membrane domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anghel VNP, Kučerka N, Pencer J, Katsaras J (2007) Scattering from laterally heterogeneous vesicles II: the form factor. J Appl Cryst 40:513–525

    Article  Google Scholar 

  • Bacia K, Schwille P, Kurzchalia T (2005) Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci USA 102:3272–3277

    Article  ADS  Google Scholar 

  • Barker JG, Glinka CJ, Moyer JJ, Kim MH, Drews AR, Agamalian M (2005) Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST. J Appl Cryst 38:1004–1011

    Article  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(2003):821–824

    Article  ADS  Google Scholar 

  • Boni LT, Minchey SR, Perkins WR, Ahl PL, Slater JL, Tate MW, Gruner SM, Janoff AS (1993) Curvature dependent induction of the interdigitated gel phase in DPPC vesicles. Biochim Biophys Acta 1146:247–257

    Article  Google Scholar 

  • Brumm T, Jørgensen K, Mouritsen OG, Bayerl T (1996) The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidyl choline/distearoyl-sn-glycero-3-phosphatidyl choline lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys J 70:1373–1379

    Google Scholar 

  • Eigenberg KE, Chan SI (1980) The effect of surface curvature on the head-group structure and phase transition properties of phospholipid bilayer vesicles. Biochim Biophys Acta 599:330–335

    Article  Google Scholar 

  • Feigenson GW, Buboltz JT (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys J 80:2775–2788

    Google Scholar 

  • Glinka CJ, Barker JG, Hammouda B, Krueger S, Moyer JJ, Orts WJ (1998) The 30 m small-sngle neutron scattering instruments at the National Institute of Standards and Technology. J Appl Cryst 31:430–445

    Article  Google Scholar 

  • Gruenewald B, Stankowski S, Blume A (1979) Curvature influence on the cooperativity and the phase transition enthalpy of lecithin vesicles. FEBS Lett 102:227–229

    Article  Google Scholar 

  • Katsaras J, Epand RF, Epand RM (1997) Absence of chiral domains in mixtures of dipalmitoylphosphatidylcholine molecules of opposite chirality. Phys Rev E 55:3751–3753

    Article  ADS  Google Scholar 

  • Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Cryst 39:895–900

    Article  Google Scholar 

  • Knoll W, Haas J, Stuhrmann HB, Füldner HH, Vogel H, Sackmann E (1981) Small-angle neutron scattering of aqueous dispersions of lipids and lipid mixtures. A contrast variation study. J Appl Cryst 14:191–202

    Article  Google Scholar 

  • Kučerka N, Pencer J, Sachs JN, Nagle JF, Katsaras J (2007) Curvature effect on the structure of phospholipid bilayers. Langmuir 23:1292–1299

    Article  Google Scholar 

  • Lake JA (1967) An interative method of slit-correcting small angle X-ray data. Acta Cryst 23:191–194

    Article  Google Scholar 

  • Lipowsky R, Dimova R (2003) Domains in membranes and vesicles. J Phys Condens Matter 15:S31–S45

    Article  ADS  Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BPhM, Takeshita K, Subbarao NK, Hu L-r (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  Google Scholar 

  • Marsh D, Watts A, Knowles PF (1977) Cooperativity of the phase transition in single- and multibilayer lipid vesicles. Biochim Biophys Acta 465:500–514

    Article  Google Scholar 

  • McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  ADS  Google Scholar 

  • Nagano H, Nakanishi T, Yao H, Ema K (1995) Effect of vesicle size on the heat capacity anomaly at the gel to liquid-crystalline phase transition in unilamellar vesicles of dimyristoyl phosphatidylcholine. Phys Rev E 52:4244–4250

    Article  ADS  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Google Scholar 

  • Nordlund JR, Schmidt CF, Dicken SN, Thompson TE (1981) Transbilayer distribution of phosphatidylethanolamine in large and small unilamellar vesicles. Biochemistry 20:3237–3241

    Article  Google Scholar 

  • Pencer J, Hallett FR (2003) Effects of vesicle size and shape on static and dynamic light scattering measurements. Langmuir 19:7488–7497

    Article  Google Scholar 

  • Pencer J, Mills T, Anghel VNP, Krueger S, Epand RM, Katsaras J (2005) Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. Eur Phys J E 18:447–458

    Article  Google Scholar 

  • Pencer J, Anghel VNP, Kučerka N, Katsaras J (2006) Scattering from laterally heterogeneous vesicles I: model independent analysis. J Appl Cryst 39:791–796

    Article  Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545

    Article  Google Scholar 

  • Schmiedel H, Almásy L, Klose G (2006) Multilamellarity, structure and hydration of extruded POPC vesicles by SANS. Eur Biophys J 35:181–189

    Article  Google Scholar 

  • Sears V (1992) Neutron scattering lengths and cross sections. Neutron News 3:26–37

    Article  Google Scholar 

  • Singh MA, Gosh SS, Shannon RF (1993) A direct method of beam-height correction in small-angle X-ray-scattering. J Appl Cryst 26:787–794

    Article  Google Scholar 

  • Takemoto H, Inoue S, Yasunaga T, Sukigara M, Toyoshima Y (1981) Studies of the phase transition in the single-lamellar liposomes. 2. liposome-size effect on the phase transition. J Phys Chem 85:1032–1037

    Article  Google Scholar 

  • van Dijck PWM, Kaper AJ, Oonk HAJ, De Gier J (1977) Miscibility properties of binary phosphatidylcholine mixtures. Biochim Biophys Acta 470:58–69

    Article  Google Scholar 

  • van Dijck PWM, de Kruijff B, Aarts PAMM, Verkleij AJ, de Gier J (1978) Phase transtions in phospholipid model membranes of different curvature. Biochim Biophys Acta 506:183–191

    Article  Google Scholar 

  • van Meer G, Vaz LC (2005) Membrane curvature sorts lipids. EMBO Rep 6:418–419

    Article  Google Scholar 

  • Veatch SL, Polozov V, Gawrisch K, Keller SL (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86:2910–2922

    Article  Google Scholar 

  • Yanagisawa M, Imai M, Masui T, Komura S, Ohta T (2007) Growth dynamics of domains in ternary fluid vesicles. Biophys J 92:115–125

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Vini Anghel and Thalia Mills for valuable and enjoyable discussions. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. Certain commercial equipment, instruments, or materials (or suppliers, or software, ...) are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Jackson or Norbert Kučerka.

Additional information

Advanced neutron scattering and complementary techniques to study biological systems. Contributions from the meetings, “Neutrons in Biology”, STFC Rutherford Appleton Laboratory, Didcot, UK, 11–13 July and “Proteins At Work 2007”, Perugia, Italy, 28–30 May 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pencer, J., Jackson, A., Kučerka, N. et al. The influence of curvature on membrane domains. Eur Biophys J 37, 665–671 (2008). https://doi.org/10.1007/s00249-008-0304-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0304-1

Keywords

Navigation