Skip to main content
Log in

Deformation of intracellular endosomes under a magnetic field

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We present a non-invasive method to monitor the membrane tension of intracellular organelles using a magnetic field as an external control parameter. By exploiting the spontaneous endocytosis of anionic colloidal ferromagnetic nanoparticles, we obtain endosomes possessing a superparamagnetic lumen in eukaryotic cells. Initially flaccid, the endosomal membrane undulates because of thermal fluctuations, restricted in zero field by the resting tension and the curvature energy of the membrane. When submitted to a uniform magnetic field, the magnetized endosomes elongate along the field, resulting in the flattening of the entropic membrane undulations. The quantification of the endosome deformation for different magnetic fields allows in situ measurement of the resting tension and the bending stiffness of the membrane enclosing the intracellular organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Bacri JC, Cabuil V, Cebers A, Menager C, Perzynski R (1996) Flattening of ferro-vesicle undulations under a magnetic field. Europhys Lett 33:235–240

    CAS  Google Scholar 

  • Bananis E, Murray JW, Stockert RJ, Satir P, Wolkoff AW (2000) Microtubule and motor-dependent endocytic vesicle sorting in vitro. J Cell Biol 151:179–186

    Article  CAS  PubMed  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    CAS  PubMed  Google Scholar 

  • Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18:6681–6692

    CAS  PubMed  Google Scholar 

  • Evans EA (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J 43:27–30

    Google Scholar 

  • Evans EA, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    CAS  PubMed  Google Scholar 

  • Häckl W, Seifert U, Sackman E (1997) Effect of fully and partially solubilized amphiphiles on bilayer bending stiffness and temperature dependence of the effective tension of giant vesicles. J Phys II (Paris) 7:1141–1157

    Google Scholar 

  • Hanzlik M, Heunemann C, Holtkamp-Rotzler E, Winklhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals 13:325–331

    CAS  PubMed  Google Scholar 

  • Helfrich W, Servuss RM (1987) Undulations, steric interaction and cohesion of fluid membranes. Nuovo Cimento 3D:137–151

    Google Scholar 

  • Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369

    CAS  PubMed  Google Scholar 

  • Holtkamp-Rotzler E, Fleissner G, Hanzlik M, Petersen N (1997) The morphological structure of a possible magnetite-based magnetoreceptor in birds. Ann Geophys 15:117

    Google Scholar 

  • Kobayashi T, Beuchat MH, Chevallier J, Makino A, Mayran N, Escola JM, Lebrand C, Cosson P, Kobayashi T, Gruenberg J (2002) Separation and characterization of late endosomal membrane domains. J Biol Chem 277:32157–32164

    Article  CAS  PubMed  Google Scholar 

  • Kummrow M, Helfrich W (1991) Deformation of giant lipid vesicles by electric field. Phys Rev A 44:8356–8360

    Article  CAS  PubMed  Google Scholar 

  • Manneville JB, Bassereau P, Lévy D, Prost J (1999) Activity of transmembrane proteins induces magnification of shape fluctuations of lipid membranes. Phys Rev Lett 82:4356–4359

    Article  CAS  Google Scholar 

  • Ménager C, Meyer M, Cabuil V, Cebers A, Bacri JC, Perzynski R (2002) Magnetic phospholipid tubes connected to magnetoliposomes: pearling instability induced by a magnetic field. Eur Phys J E 7:325–337

    Google Scholar 

  • Milner ST, Safran SA (1987) Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A 36:4371–4379

    CAS  PubMed  Google Scholar 

  • Monck JR, Alvarez de Toledo G, Fernandez JM (1990) Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc Natl Acad Sci USA 87:7804–7808

    CAS  PubMed  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179:79–102

    CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144:497–506

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    Article  CAS  PubMed  Google Scholar 

  • Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci USA 99:5394–5399

    Article  CAS  PubMed  Google Scholar 

  • Sackmann E (1994) Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett 346:3–16

    Article  CAS  PubMed  Google Scholar 

  • Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 139:1137–1155

    PubMed  Google Scholar 

  • Shcherbakov VP, Winklhofer M (1999) The osmotic magnetometer: a new model for magnetoreceptors in animals. Eur Biophys J 28:380–392

    Google Scholar 

  • Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11:4339–4346

    CAS  PubMed  Google Scholar 

  • Valberg PA (1984) Magnetometry of ingested particles in pulmonary macrophages. Science 224:513–516

    CAS  PubMed  Google Scholar 

  • Wilhelm C, Gazeau F, Bacri JC (2002a) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002b) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18:8148–8155

    Article  CAS  Google Scholar 

  • Zilker A, Ziegler M, Sackmann E (1992) Spectral analysis of erythrocyte flickering in the 0.3–4-μm−1 regime by microinterferometry combined with fast image processing. Phys Rev A 46:7998–8001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Legrand for the SQUID measurements, S. Neveu for providing us the nanoparticles, B. Dacrossa for her technical assistance in TEM and E. Coudrier for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gazeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, C., Cebers, A., Bacri, JC. et al. Deformation of intracellular endosomes under a magnetic field. Eur Biophys J 32, 655–660 (2003). https://doi.org/10.1007/s00249-003-0312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0312-0

Keywords

Navigation