Skip to main content

Advertisement

Log in

Diversity of Bacterial Communities in a Profile of a Winter Wheat Field: Known and Unknown Members

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known about the distribution and composition of bacterial communities through the soil profile, particularly in agricultural soils, as most studies have focused only on topsoils or forest and grassland soils. In the present work, we have used bar-coded pyrosequencing analysis of the V3 region of the 16S rRNA gene to analyze bacterial diversity in a profile (depths 10, 25, and 45 cm) of a well-characterized field of winter wheat. Taxonomic assignment was carried out with the Ribosomal Database Project (RDP) Classifier program with three bootstrap scores: a main run at 0.80, a confirmation run at 0.99, and a run at 0 to gain information on the unknown bacteria. Our results show that biomass and bacterial quantity and diversity decreased greatly with depth. Depth also had an impact, in terms of relative sequence abundance, on 81 % of the most represented taxonomic ranks, notably the ranks Proteobacteria, Bacteroidetes, Actinobacteridae, and Acidobacteria. Bacterial community composition differed more strongly between the topsoil (10 and 25 cm) and subsoil (45 cm) than between levels in the topsoil, mainly because of shifts in the carbon, nitrogen, and potassium contents. The subsoil also contained more unknown bacteria, 53.96 % on the average, than did the topsoil, with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these unknown bacteria seem to belong to Deltaproteobacteria, Actinobacteria, Rhizobiales, and Acidobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99(16):10494–10499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  PubMed  Google Scholar 

  3. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72(3):1719–1728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  6. Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11(12):3045–3062

    Article  PubMed  Google Scholar 

  7. Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR (2010) Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42(12):2153–2160

    Article  CAS  Google Scholar 

  8. Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65

    Article  CAS  Google Scholar 

  9. Thomson BC, Ostle N, McNamara N, Bailey MJ, Whiteley AS, Griffiths RI (2010) Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microb Ecol 59(2):335–343

    Article  PubMed  Google Scholar 

  10. Will C, Thürmer A, Wollherr A, Nacke H, Herold N, Schrumpf M et al (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 76(20):6751–6759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Preem JK, Truu J, Truu M, Mander Ü, Oopkaup K, Lõhmus K et al (2012) Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecol Eng 49:10–17

    Article  Google Scholar 

  12. Rohini-Kumar M, Osborne JW, Saravanan VS (2013) Comparison of soil bacterial communities of Pinus patula of Nilgiris, western ghats with other biogeographically distant pine forest clone libraries. Microb Ecol 66(1):132–144

    Article  CAS  PubMed  Google Scholar 

  13. Navarrete AA, Cannavan FS, Taketani RG, Tsai SM (2010) A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity 2:787–809

    Article  CAS  Google Scholar 

  14. Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77(3):911–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ding GC, Piceno YM, Heuer H, Weinert N, Dohrmann AB, Carrillo A et al (2013) Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem. PLoS ONE 8(3):e59497. doi:10.1371/journal.pone.0059497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fierer N, Schimel JP, Holden P (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  17. Schutz K, Kandeler E, Nagel P, Scheu S, Ruess L (2010) Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils. FEMS Microbiol Ecol 72:445–455

    Article  CAS  PubMed  Google Scholar 

  18. White RG, Kirkegaard JA (2010) The distribution and abundance of wheat roots in a dense, structured subsoil-implications for water uptake. Plant Cell Environ 33(2):133–148

    Article  PubMed  Google Scholar 

  19. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Article  CAS  PubMed  Google Scholar 

  23. Hill TC, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43(1):1–11

    Article  CAS  PubMed  Google Scholar 

  24. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17-7

  25. Ekelund F, Rønn R, Christensen S (2001) Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Soil Biol Biochem 33:475–481

    Article  CAS  Google Scholar 

  26. Zhou J, Guo W, Wang R, Han X, Wang Q (2008) Microbial community diversity in the profile of an agricultural soil in northern China. J Environ Sci (China) 20(8):981–988

    Article  CAS  Google Scholar 

  27. Goberna M, Insam H, Klammer S, Pascual JA, Sánchez J (2005) Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb Ecol 50(3):315–326

    Article  CAS  PubMed  Google Scholar 

  28. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  29. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364

    Article  PubMed  Google Scholar 

  30. Yoon JH, Kang SJ, Lee SY, Lee JS, Park S (2011) Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from marine sand, deep-branching members of the phylum Bacteroidetes. Int J Syst Evol Microbiol 61:1066–1072

    Article  CAS  PubMed  Google Scholar 

  31. Tejeda-Agredanoa MC, Gallegob S, Vilab J, Grifollb M, Ortega-Calvoa JJ, Cantosa M (2013) Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol Biochem 57:830–840

    Article  Google Scholar 

  32. Jones R, Robeson M, Lauber C, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kishimoto N, Tano T (1987) Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage and soils. J Gen Appl Microbiol 33:11–25

    Article  CAS  Google Scholar 

  34. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666

    Article  CAS  PubMed  Google Scholar 

  35. Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on the culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Foesel BU, Rohde M, Overmann J (2013) Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil—the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 36(2):82–89

    Article  CAS  PubMed  Google Scholar 

  39. Eilers G, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42(6):896–903

    Article  CAS  Google Scholar 

  40. McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment—a review. Gene 115(1–2):189–192

    Article  CAS  PubMed  Google Scholar 

  41. Kirby R (2005) Actinomycetes and lignin degradation. Adv Appl Microbiol 58C:125–168

    Article  PubMed  Google Scholar 

  42. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12(8):2070–2082

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Li RW, Connor EE, Li C, Baldwin Vi RL, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14(1):129–139

    Article  PubMed  Google Scholar 

  44. Giongo A, Favet J, Lapanje A, Gano KA, Kennedy S, Davis-Richardson AG (2013) Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples. Aerobiologia 29(1):71–84

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Gembloux Agro-Bio Tech - University of Liège for financially supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Stroobants.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Composition of bacterial communities present in the soil at three depths: 10, 25, and 45 cm. Relative abundances of the corresponding 16S rDNA sequences were calculated on the basis of an RDP Classifier run with the bootstrap scores of 0.80, 0.99, or 0 (XLS 36 kb)

Supplementary Table 2

Percentages of assignment. Percentages were calculated for each taxonomic rank by dividing the relative abundance of the relevant sequences obtained after the RDP Classifier run at 0.80 by that obtained after the run at score 0 (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroobants, A., Degrune, F., Olivier, C. et al. Diversity of Bacterial Communities in a Profile of a Winter Wheat Field: Known and Unknown Members. Microb Ecol 68, 822–833 (2014). https://doi.org/10.1007/s00248-014-0458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0458-6

Keywords

Navigation