Skip to main content
Log in

Intraspecific Variation and Interspecific Differences in the Bacterial and Fungal Assemblages of Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) Nests

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although interest in the relationship between birds and microorganisms is increasing, few studies have compared nest microbial assemblages in wild passerines to determine variation within and between species. Culturing microorganisms from blue tit (Cyanistes caeruleus) and great tit (Parus major) nests from the same study site demonstrated diverse microbial communities with 32 bacterial and 13 fungal species being isolated. Dominant bacteria were Pseudomonas fluorescens, Pseudomonas putida, and Staphylococcus hyicus. Also common in the nests were the keratinolytic bacteria Pseudomonas stutzeri and Bacillus subtilis. Dominant fungi were Cladosporium herbarum and Epicoccum purpurascens. Aspergillus flavous, Microsporum gallinae, and Candida albicans (causative agents of avian aspergillosis, favus, and candidiasis, respectively) were present in 30%, 25%, and 10% of nests, respectively. Although there were no differences in nest mass or materials, bacterial (but not fungal) loads were significantly higher in blue tit nests. Microbial species also differed interspecifically. As regards potential pathogens, the prevalence of Enterobacter cloacae was higher in blue tit nests, while Pseudomonas aeruginosa—present in 30% of blue tit nests—was absent from great tit nests. The allergenic fungus Cladosporium cladosporioides was both more prevalent and abundant in great tit nests. Using discriminant function analysis (DFA), nests were classified to avian species with 100% accuracy using the complete microbial community. Partial DFA models were created using a reduced number of variables and compared using Akaike’s information criterion on the basis of model fit and parsimony. The best models classified unknown nests with 72.5–95% accuracy using a small subset of microbes (n = 1–8), which always included Pseudomonas agarici. This suggests that despite substantial intraspecific variation in nest microflora, there are significant interspecific differences—both in terms of individual microbes and the overall microbial community—even when host species are closely related, ecologically similar, sympatric, and construct very similar nests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aguirre AA, Quan TJ, Cook RS, McLean RG (1992) Cloacal flora isolated from wild black-bellied whistling ducks (Dendrocygna autumnalis) in Laguna La Nacha, Mexico. Avian Dis 36:459–462

    Article  CAS  PubMed  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  3. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  4. Berger S, Disko R, Gwinner H (2003) Bacteria in starling nests. J Ornithol 144:317–322

    Google Scholar 

  5. Bisson I-A, Marra PP, Burtt EH Jr, Sikaroodi M, Gillevet PM (2007) A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb Ecol 54:65–81

    Article  PubMed  Google Scholar 

  6. Blanco G, Lemus JA, Grange J (2006) Faecal bacteria associated with different diets of wintering red kites: influence of livestock carcass dumps in microflora alteration and pathogen acquisition. J Appl Ecol 43:990–998

    Article  Google Scholar 

  7. Brittingham MC, Temple SA, Duncan RM (1998) A survey of the prevalence of selected bacteria in wild birds. J Wildl Dis 24:299–307

    Google Scholar 

  8. Bruce J, Drysdale EM (1993) Trans-shell transmission. In: Board RG, Fuller R, Board RG, Fuller R (eds) Microbiology of the avian egg. Springer, New York

    Google Scholar 

  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practice information-theoretic approach. Springer, New York

    Google Scholar 

  10. Burtt EH Jr, Ichida JM (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk 166:364–372

    Google Scholar 

  11. Burtt EH Jr, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106:681–686

    Article  Google Scholar 

  12. Cafarchia C, Camarda A, Romito D, Campolo M, Quaglia N, Tullio D, Otranto D (2006) Occurrence of yeasts in cloacae of migratory birds. Mycopathologia 161:229–234

    Article  CAS  PubMed  Google Scholar 

  13. Campbell B (1949) Pied flycatchers and nestboxes. Bird Notes 23:224–230

    Google Scholar 

  14. Carter GR (1982) Essentials of veterinary bacteriology and mycology. Michigan State University Press, USA

    Google Scholar 

  15. Cook MI, Beissinger SR, Toranzos G, Rodriguez RA, Arendt WJ (2005) Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behav Ecol 16:30–36

    Article  Google Scholar 

  16. de Hoog GS, Guarro J, Gené J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraal Bureau voor Schimmelcultures, Utrecht

    Google Scholar 

  17. Deacon J (2005) Fungal biology, 4th edn. Blackwell, Oxford

    Google Scholar 

  18. Deinhofer M, Pernthaner A (1993) Differenzierung von Staphylokokken aus Schaf-und Ziegenmilchproben [Differentiation of staphylococci from sheep and goat milk samples]. Dtsch Tierärztl Wochenschr 100:234–236 (in German)

    CAS  PubMed  Google Scholar 

  19. Droual R, Bickford AA, Walker RL, Channing SE, McFadden C (1991) Favus in a backyard flock of game chickens. Avian Dis 35:625–630

    Article  CAS  PubMed  Google Scholar 

  20. Field AP (2000) Discovering statistics using SPSS for windows: advanced techniques for beginners. Sage, London

    Google Scholar 

  21. Fischer R, Kües U (2006) Asexual sporulation in mycelial fungi. In: Kües U, Fischer R (eds) The Mycota: growth, differentiation and sexuality, 2nd edn. Springer, New York

    Google Scholar 

  22. Garcia ME, Lanzarot P, Rodas VL, Costas E, Blanco JL (2007) Fungal flora in the trachea of birds from a wildlife rehabilitation centre in Spain. Vet Med 52:464–470

    Google Scholar 

  23. Glunder G (2002) Influence of diet on the occurrence of some bacteria in the intestinal flora of wild and pet birds. Dtsch Tierärztl Wochenschr 109:266–270

    CAS  PubMed  Google Scholar 

  24. Gunderson AR (2008) Feather-degrading bacteria: a new frontier in avian and host–parasite research? Auk 125:972–979

    Article  Google Scholar 

  25. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams and Wilkins, London

    Google Scholar 

  26. Hubálek Z (1978) Coincidence of fungal species associated with birds. Ecology 59:438–442

    Article  Google Scholar 

  27. Hubálek Z (2000) Keratinophilic fungi associated with free-living mammals and birds. In: Kushwaha RKS, Guarro J (eds) Biology of dermatophytes and other keratinophilic fungi. Revista Iberoamericana de Micología, São Paulo, pp 93–103

    Google Scholar 

  28. Janiga M, Sedlárova A, Rigg R, Novotná M (2006) Patterns of prevalence among bacterial communities of alpine accentors (Prunella collaris) in the Tatra Mountains. J Ornithol 148:135–143

    Article  Google Scholar 

  29. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE, Pfyffer GE (2001) Application of the Sherlock mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 39:964–970

    Article  CAS  PubMed  Google Scholar 

  30. Kunitsky C, Osterhout G, Sasser M (2006) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock® Microbial Identification System. In: Miller MJ (ed) Encyclopaedia of rapid microbiological methods, vol. III. Parental Drug Association, Bethesda, pp 1–17

    Google Scholar 

  31. Larone DH (1995) Medically important fungi: a guide to identification, 3rd edn. ASM, Washington

    Google Scholar 

  32. Lombardo MP, Thorpe PA, Cichewicz R, Henshaw M, Millard C, Steen C, Zeller TK (1996) Communities of cloacal bacteria in tree swallow families. Condor 98:167–172

    Article  Google Scholar 

  33. Lucas FS, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Biol 36:510–516

    Article  Google Scholar 

  34. Maul JD, Gandhi JP, Farris JL (2005) Community-level physiological profiles of cloacal microbes in songbirds (Order: Passeriformes): variation due to host species, host diet and habitat. Microb Ecol 50:19–28

    Article  CAS  PubMed  Google Scholar 

  35. McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Google Scholar 

  36. Mehmke U, Gerlach H, Kosters J, Hausmann S (1992) The aerobic bacterial flora of songbird nests. Dtsch Tierärztl Wochenschr 99:478–482 (in German)

    CAS  PubMed  Google Scholar 

  37. Mielnichuk N, Lopez SE (2007) Interaction between Epicoccum purpurascens and xylophagous basidiomycetes on wood blocks. Forest Pathol 37:236–242

    Article  Google Scholar 

  38. Mills TK, Lombardo MP, Thorpe PA (1999) Microbial colonization of the cloacae of nestling tree swallows. Auk 116:947–956

    Google Scholar 

  39. Moreno J, Briones V, Merino S, Ballesteros C, Sanz JJ, Tomás G (2003) Beneficial effects of cloacal bacteria on growth and fledging size in nestling pied flycatchers (Ficedula hypoleuca) in Spain. Auk 120:784–790

    Article  Google Scholar 

  40. Nakadate S, Nozawa K, Sato H, Horie H, Fujii Y, Nagai M, Hosoe T, Kawai K, Takashi Y (2008) Antifungal cyclic depsipeptide, eujavanicin a, isolated from Eupenicillium javanicum. J Nat Prod 71:1640–1642

    Article  CAS  PubMed  Google Scholar 

  41. Nuttall P (1997) Viruses, bacteria and fungi of birds. In: Clayton D, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 271–302

    Google Scholar 

  42. Osterhout GJ, Shull VH, Dick JD (1991) Identification of clinical isolates of Gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol 29:1822–1830

    CAS  PubMed  Google Scholar 

  43. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    Article  CAS  Google Scholar 

  44. Pendergrass SM (1998) Aerobic bacteria by GC-FAME (method 0801). In: Schlecht PC, O’Connor PF (eds) NIOSH manual of analytical methods, 4th edn. US Government Printing Office, Washington

    Google Scholar 

  45. Petit C, Hossaert-McKey M, Perret P, Blondel J, Lambrechts MM (2002) Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol Lett 5:585–589

    Article  Google Scholar 

  46. Pinowski J, Barkowska M, Kruszewicz AH, Kruszewicz AG (1994) The causes of the mortality of eggs and nestlings of Passer spp. J Biosci 19:441–451

    Article  Google Scholar 

  47. Riffel A, Brandelli A (2006) Keratinolytic bacteria isolated from feather waste. Braz J Microbiol 37:395–399

    Article  CAS  Google Scholar 

  48. Ruiz-Rodríguez M, Lucas FS, Heeb P (2009) Differences in intestinal microbiota between avian brood parasites and their hosts. Biol J Linn Soc 96:406–414

    Article  Google Scholar 

  49. Shaw P (2003) Multivariate statistics for the environmental sciences. Hodder Arnold, London

    Google Scholar 

  50. Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uroygial oil on feather-degrading bacteria. J Avian Biol 34:345–349

    Article  Google Scholar 

  51. Shawkey MD, Mills KL, Dale C, Hill GE (2005) Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb Ecol 50:40–47

    Article  PubMed  Google Scholar 

  52. Shawkey MD, Pillai SR, Hill GE, Siefferman LM, Roberts SR (2007) Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am Nat 169:S112–S121

    Article  PubMed  Google Scholar 

  53. Silvanose CD, Bailey TA, Naldo JL, Howlett JC (2001) Bacterial flora of the conjunctiva and nasal cavity in normal and diseased captive bustards. Avian Dis 45:447–451

    Article  CAS  PubMed  Google Scholar 

  54. Simon A, Thomas DW, Blondel J, Perret P, Lambrechts MM (2004) Physiological ecology of Mediterranean blue tits (Parus caeruleus L.): effects of ectoparasites (Protocalliphora spp.) and food abundance on metabolic capacity of nestlings. Physiol Biochem Zool 77:492–501

    Article  PubMed  Google Scholar 

  55. Singleton DR, Harper RG (1998) Bacteria in old house wren nests. J Field Ornithol 69:71–74

    Google Scholar 

  56. St Germain G, Summerbell R (1995) Identifying filamentous fungi: a clinical laboratory handbook. Star, Belmont

    Google Scholar 

  57. Tabachnick BG, Fidel LS (1989) Using multivariate statistics, 2nd edn. HarperCollins, New York

    Google Scholar 

  58. Thompson IP, Bailey MJ, Ellis RJ, Purdy KJ (1993) Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol Lett 102:75–84

    Article  CAS  Google Scholar 

  59. Török J, Tóth L (1999) Asymmetric competition between two tit species: a reciprocal removal experiment. J Anim Ecol 68:338–345

    Article  Google Scholar 

  60. Tortora GJ, Funke BR, Case CL (2007) Microbiology: an introduction, 9th edn. Pearson, London

    Google Scholar 

  61. Tóth EM, Hell É, Kovács G, Borsodi AK, Márialigeti K (2006) Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb Ecol 51:13–21

    Article  PubMed  Google Scholar 

  62. Tripet F, Richner H (1997) The coevolutionary potential of a ‘generalist’ parasite, the hen flea Ceratophyllus gallinae. Parasitology 115:419–427

    Article  PubMed  Google Scholar 

  63. von Graevenitz A, Osterhout G, Dick J (1991) Grouping of some clinically relevant Gram-positive rods by automated fatty acid analysis: diagnostic implications. Acta Pathol Microbiol Immunol Scand 99:147–154

    Google Scholar 

  64. Walker SE, Sander JE, Cline JL, Helton JS (2005) Characterization of Pseudomonas aeruginosa isolates associated with mortality in broiler chicks. Avian Dis 46:1045–1050

    Article  Google Scholar 

  65. Whitaker JM, Cristol DA, Forsyth MH (2005) Prevelence and genetic diversity of Bacillus licheniformis in avian plumage. J Field Ornithol 76:264–270

    Google Scholar 

  66. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189

    Article  PubMed  Google Scholar 

  67. Wieliczko A, Piasecki T, Dorrestein GM, Adamski A, Mazurkiewicz M (2003) Evaluation of the health status of goshawk chicks (Accipiter gentilis) nesting in Wroclaw vicinity. Bull Vet Inst Pulawy 47:247–257

    Google Scholar 

  68. Wobester GA (1981) Diseases of wild waterfowl. Plenum, New York

    Google Scholar 

Download references

Acknowledgments

We thank the RSPB for allowing us to use their reserve as a study site and for the provision of data on avian reproductive success, and Hannah Stubbs for providing invaluable laboratory support. We also thank three anonymous reviewers for their detailed and constructive comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne E. Goodenough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodenough, A.E., Stallwood, B. Intraspecific Variation and Interspecific Differences in the Bacterial and Fungal Assemblages of Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) Nests. Microb Ecol 59, 221–232 (2010). https://doi.org/10.1007/s00248-009-9591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9591-z

Keywords

Navigation