Skip to main content
Log in

Plant-by-Plant Variations of Bacterial Communities Associated with Leaves of the Nickel Hyperaccumulator Alyssum bertolonii Desv.

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria associated with tissues of metal-hyperaccumulating plants are of great interest due to the multiple roles they may play with respect to plant growth and resistance to heavy metals. The variability of bacterial communities associated with plant tissues of three populations of Alyssum bertolonii, a Ni hyperaccumulator endemic of serpentine outcrops of Central Italy, was investigated. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes was applied to DNA extracted from leaf tissues of 30 individual plants from three geographically separated serpentine outcrops. Moreover, T-RFLP fingerprinting was also performed on DNA extracted from the same soils from which the plants were collected. Fifty-nine unique terminal-restriction fragments (TRFs) were identified, with more than half of the taxonomically interpreted TRFs assigned to Alpha- and Gamma-Proteobacteria and Clostridia. Data were then used to define the extent of variation of bacterial communities due to single plants or to plant populations. Results indicated a very high plant-by-plant variation of leaf-associated community (more than 93% of total variance observed). However, a core (numerically small) of plant-specific TRFs was found. This work demonstrates that plant-associated bacterial communities represent a large reservoir of biodiversity and that the high variability existing between plants, even from the same population, should be taken into account in future studies on association between bacteria and metal-hyperaccumulating plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Baker AMJ (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  2. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  PubMed  CAS  Google Scholar 

  3. Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M (2000) Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Appl Environ Microbiol 66:4785–4789

    Article  PubMed  CAS  Google Scholar 

  4. Compant D, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  5. Excoffier L, Smouse PE, Quattro M (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  6. Galardi F, Corrales I, Mengoni A, Pucci S, Barletti L, Barzanti R, Arnetoli M, Gabbrielli R, Gonnelli C (2007) Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Env Exp Bot 60:377–384

    Article  CAS  Google Scholar 

  7. Galardi F, Mengoni A, Pucci S, Barletti L, Massi L, Barzanti R, Gabbrielli R, Gonnelli C (2007) Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: a survey of populations in nature. Env Exp Bot 60:50–56

    Article  CAS  Google Scholar 

  8. Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  PubMed  CAS  Google Scholar 

  9. Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant–Microbe Interact 15:233–242

    Article  PubMed  CAS  Google Scholar 

  10. Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp nov. Syst Appl Microbiol 29:634–644

    Article  PubMed  CAS  Google Scholar 

  11. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  12. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant–Microbe Interact 15:894–906

    Article  PubMed  CAS  Google Scholar 

  13. Kupper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  PubMed  CAS  Google Scholar 

  14. Lidstrom ME, Christoserdova L (2002) Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184:1818

    Article  PubMed  CAS  Google Scholar 

  15. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. Calaminaria. Int J Phytoremediat 4:101–105

    Article  Google Scholar 

  16. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mergeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  17. Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2:323–327

    Article  PubMed  CAS  Google Scholar 

  18. Mengoni A, Bazzicalupo M (2002) The statistical treatment of data and the Analysis of MOlecular VAriance (AMOVA) in molecular microbial ecology. Ann Microbiol 52:95–101

    CAS  Google Scholar 

  19. Mengoni A, Gonnelli C, Brocchini E, Galardi F, Pucci S, Gabbrielli R, Bazzicalupo M (2003) Chloroplast genetic diversity and biogeography in the serpentine endemic Ni-hyperaccumulator Alyssum bertolonii. New Phytol 157:349–356

    Article  Google Scholar 

  20. Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol Ecol 9:1319–1324

    Article  PubMed  CAS  Google Scholar 

  21. Mengoni A, Grassi E, Bazzicalupo M (2002) Cloning method for taxonomic interpretation of T-RFLP patterns. Biotechniques 33:990

    PubMed  CAS  Google Scholar 

  22. Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb Ecol 48:209–217

    Article  PubMed  CAS  Google Scholar 

  23. Mengoni A, Tatti E, Decorosi F, Viti C, Bazzicalupo M, Giovannetti L (2005) Comparison of 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Microb Ecol 50:375–384

    Article  PubMed  CAS  Google Scholar 

  24. Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698

    Article  PubMed  CAS  Google Scholar 

  25. Newman L, Reynolds C (2005) Bacteria and phyto-remediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  PubMed  CAS  Google Scholar 

  26. Porteous-Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell D, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Sys App Micro 29:539–556

    Article  Google Scholar 

  27. Rohlf FJ (1990) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Software, New York

    Google Scholar 

  28. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant–Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  29. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  30. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  PubMed  CAS  Google Scholar 

  31. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  32. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  33. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  34. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  PubMed  CAS  Google Scholar 

  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  36. Vergnano Gambi O (1992) The distribution and ecology of the vegetation of ultramafic soils in Italy. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks—a world view. Kluwer, Dordrecht, pp 217–247

    Google Scholar 

Download references

Acknowledgments

We acknowledge E.G. Biondi and F. Galardi for critical reading of the manuscript and three anonymous reviewers for helping improving the manuscript. This work was partially performed with a grant from the National Natural Science Foundation of China (No. 40471117 and 30400053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Mengoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mengoni, A., Pini, F., Huang, LN. et al. Plant-by-Plant Variations of Bacterial Communities Associated with Leaves of the Nickel Hyperaccumulator Alyssum bertolonii Desv.. Microb Ecol 58, 660–667 (2009). https://doi.org/10.1007/s00248-009-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9537-5

Keywords

Navigation