Skip to main content

Advertisement

Log in

Pediatric neurodegenerative white matter processes: leukodystrophies and beyond

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric neurodegenerative white matter processes are complex, numerous and result from a vast array of causes ranging from white matter injury or inflammation to congenital metabolic disorders. When faced with a neurodegenerative white matter process on neuroimaging, the first step for the radiologist is to determine whether the findings represent a congenital metabolic leukodystrophy or one of various other white matter processes. In this review we first describe a general approach to neurodegenerative white matter disorders. We will briefly describe a few white matter diseases that mimic metabolic leukodystrophies. In the second half of the review we discuss an approach to distinguishing and classifying white matter leukodystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kristjansdottir R, Uvebrant P, Hagberg B et al (1996) Disorders of the cerebral white matter in children. The spectrum of lesions. Neuropediatrics 27:295–298

    Article  CAS  Google Scholar 

  2. van der Knaap MS, Breiter SN, Naidu S et al (1999) Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 213:121–133

    PubMed  Google Scholar 

  3. Barkovich AJ (2005) Pediatric neuroimaging. Lippincott Williams and Wilkins, Philadelphia, pp 76–187

    Google Scholar 

  4. Van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  5. Haynes RL, Baud O, Li J et al (2005) Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 15:225–233

    PubMed  CAS  Google Scholar 

  6. Idrissova Zh R, Boldyreva MN, Dekonenko EP et al (2003) Acute disseminated encephalomyelitis in children: clinical features and HLA-DR linkage. Eur J Neurol 10:537–546

    Article  PubMed  CAS  Google Scholar 

  7. Menge T, Kieseier BC, Nessler S et al (2007) Acute disseminated encephalomyelitis: an acute hit against the brain. Curr Opin Neurol 20:247–254

    Article  PubMed  Google Scholar 

  8. Baum PA, Barkovich AJ, Koch TK et al (1994) Deep gray matter involvement in children with acute disseminated encephalomyelitis. AJNR 15:1275–1283

    PubMed  CAS  Google Scholar 

  9. Honkaniemi J, Dastidar P, Kahara V et al (2001) Delayed MR imaging changes in acute disseminated encephalomyelitis. AJNR 22:1117–1124

    PubMed  CAS  Google Scholar 

  10. American Academy of Pediatrics Committee on Infectious Diseases (2000) Prevention of Lyme disease. Pediatrics 105:142–147

    Article  Google Scholar 

  11. Hoppa E, Bachur R (2007) Lyme disease update. Curr Opin Pediatr 19:275–280

    Article  PubMed  Google Scholar 

  12. Pachner AR, Steiner I (2007) Lyme neuroborreliosis: infection, immunity, and inflammation. Lancet Neurol 6:544–552

    Article  PubMed  Google Scholar 

  13. Cheon JE, Kim IO, Hwang YS et al (2002) Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics 22:461–476

    PubMed  Google Scholar 

  14. Brenner M, Johnson AB, Boespflug-Tanguy O et al (2001) Mutations in GFAP, encoding glial fibrillary acidic protein associated with Alexander disease. Nat Genet 27:117–120

    Article  PubMed  CAS  Google Scholar 

  15. Sener RN (2001) Demonstration of glycine peaks at 3.50 ppm in a patient with van der Knaap syndrome. AJNR 22:1587–1589

    PubMed  CAS  Google Scholar 

  16. Matalon R, Michals K, Sebesta D et al (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471

    Article  PubMed  CAS  Google Scholar 

  17. Brismar J, Brismar G, Gascon G et al (1990) Canavan disease: CT and MR imaging of the brain. AJNR 11:805–810

    PubMed  CAS  Google Scholar 

  18. Grodd W, Krageloh-Mann I, Petersen D et al (1990) In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 336:437–438

    Article  PubMed  CAS  Google Scholar 

  19. Topcu M, Gartioux C, Ribierre F et al (2000) Vacuoliting megalencephalic leukoencephalopathy with subcortical cysts, mapped to chromosome 22qtel. Am J Hum Genet 66:733–739

    Article  PubMed  CAS  Google Scholar 

  20. van der Knaap MS, Barth PG, Vrensen GF et al (1996) Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course. Acta Neuropathol 92:206–212

    Article  PubMed  Google Scholar 

  21. Gelal F, Calli C, Apaydin M et al (2002) van der Knaap’s leukoencephalopathy: report of five new cases with emphasis on diffusion-weighted MRI findings. Neuroradiology 44:625–630

    Article  PubMed  CAS  Google Scholar 

  22. van der Knaap MS, Kamphorst W, Barth PG et al (1998) Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology 51:540–547

    PubMed  Google Scholar 

  23. van der Voorn JP, van Kollenburg B, Bertrand G et al (2005) The unfolded protein response in vanishing white matter disease. J Neuropathol Exp Neurol 64:770–775

    Article  PubMed  Google Scholar 

  24. Donnell GN, Collado M, Koch R (1961) Growth and development of children with galactosemia. J Pediatr 58:836–844

    Article  PubMed  CAS  Google Scholar 

  25. Nelson MD Jr, Wolff JA, Cross CA et al (1992) Galactosemia: evaluation with MR imaging. Radiology 184:255–261

    PubMed  Google Scholar 

  26. Otaduy MC, Leite CC, Lacerda MT et al (2006) Proton MR spectroscopy and imaging of a galactosemic patient before and after dietary treatment. AJNR 27:204–207

    PubMed  CAS  Google Scholar 

  27. Munoz A, Mateos F, Simon R et al (1999) Mitochondrial diseases in children: neuroradiological and clinical features in 17 patients. Neuroradiology 41:920–928

    Article  PubMed  CAS  Google Scholar 

  28. Chu BC, Terae S, Takahashi C et al (1999) MRI of the brain in the Kearns-Sayre syndrome: report of four cases and a review. Neuroradiology 41:759–764

    Article  PubMed  CAS  Google Scholar 

  29. Seigel RS, Seeger JF, Gabrielsen TO et al (1979) Computed tomography in oculocraniosomatic disease (Kearns-Sayre syndrome). Radiology 130:159–164

    PubMed  CAS  Google Scholar 

  30. Dinopoulos A, Cecil KM, Schapiro MB et al (2005) Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics 36:290–301

    Article  PubMed  CAS  Google Scholar 

  31. Barkovich AJ, Good WV, Koch TK et al (1993) Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR 14:1119–1137

    PubMed  CAS  Google Scholar 

  32. Itoh K, Kase R, Shimmoto M et al (1995) Protective protein as an endogenous endothelin degradation enzyme in human tissues. J Biol Chem 270:515–518

    Article  PubMed  CAS  Google Scholar 

  33. Chen CY, Zimmerman RA, Lee CC et al (1998) Neuroimaging findings in late infantile GM1 gangliosidosis. AJNR 19:1628–1630

    PubMed  CAS  Google Scholar 

  34. Pavlu J, Jackson M, Panoskaltsis N (2006) GM1-gangliosidosis type I. Br J Haematol 135:422

    Article  PubMed  Google Scholar 

  35. Patay Z (2005) Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15:2284–2303

    Article  PubMed  Google Scholar 

  36. Koelfen W, Freund M, Jaschke W et al (1994) GM-2 gangliosidosis (Sandhoff’s disease): two-year follow-up by MRI. Neuroradiology 36:152–154

    Article  PubMed  CAS  Google Scholar 

  37. Marsden DL, Nyhan WL (1992) Neurological diseases in disorders of organic acids. Curr Opin Neurol Neurosurg 5:349–354

    PubMed  CAS  Google Scholar 

  38. Kaur M, Verma IC (1995) Enzyme studies in GM2 gangliosidosis, and their application in prenatal diagnosis. Ind J Pediatr 62:485–489

    Article  CAS  Google Scholar 

  39. Mugikura S, Takahashi S, Higano S et al (1996) MR findings in Tay-Sachs disease. J Comput Assist Tomogr 20:551–555

    Article  PubMed  CAS  Google Scholar 

  40. Inglese M, Nusbaum AO, Pastores GM et al (2005) MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis. AJNR 26:2037–2042

    PubMed  Google Scholar 

  41. Loes DJ, Peters C, Krivit W (1999) Globoid cell leukodystrophy: distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. AJNR 20:316–323

    PubMed  CAS  Google Scholar 

  42. Choi S, Enzmann DR (1993) Infantile Krabbe disease: complementary CT and MR findings. AJNR 14:1164–1166

    PubMed  CAS  Google Scholar 

  43. Brockmann K, Dechent P, Wilken B et al (2003) Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology 60:819–825

    PubMed  CAS  Google Scholar 

  44. Moser HW, Loes DJ, Melhem ER (2000) X-Linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics 31:227–239

    Article  PubMed  CAS  Google Scholar 

  45. van Geel BM, Bezman L, Loes DJ et al (2001) Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol 49:186–194

    Article  PubMed  Google Scholar 

  46. Stephenson DJ, Bezman L, Raymond GV (2000) Acute presentation of childhood adrenoleukodystrophy. Neuropediatrics 31:293–297

    Article  PubMed  CAS  Google Scholar 

  47. Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120(8):1485–1508

    Article  PubMed  Google Scholar 

  48. Moser HW, Moser AB (1996) Peroxisomal disorders: overview. Ann N Y Acad Sci 804:427–441

    Article  PubMed  CAS  Google Scholar 

  49. Melhem ER, Loes DJ, Georgiades CS et al (2000) X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. AJNR 21:839–844

    PubMed  CAS  Google Scholar 

  50. Barkovich AJ, Ferriero DM, Bass N et al (1997) Involvement of the pontomedullary corticospinal tracts: a useful finding in the diagnosis of X-linked adrenoleukodystrophy. AJNR 18:95–100

    PubMed  CAS  Google Scholar 

  51. Eichler FS, Itoh R, Barker PB et al (2002) Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 225:245–252

    Article  PubMed  Google Scholar 

  52. Brismar J, Aqeel A, Brismar G et al (1990) Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR 11:1219–1228

    PubMed  CAS  Google Scholar 

  53. Fariello G, Dionisi-Vici C, Orazi C et al (1996) Cranial ultrasonography in maple syrup urine disease. AJNR 17:311–315

    PubMed  CAS  Google Scholar 

  54. Cavalleri F, Berardi A, Burlina AB et al (2002) Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 44:499–502

    Article  PubMed  CAS  Google Scholar 

  55. Heindel W, Kugel H, Wendel U et al (1995) Proton magnetic resonance spectroscopy reflects metabolic decompensation in maple syrup urine disease. Pediatr Radiol 25:296–299

    Article  PubMed  CAS  Google Scholar 

  56. Kingsley PB, Shah TC, Woldenberg R (2006) Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed 19:435–462

    Article  PubMed  CAS  Google Scholar 

  57. Kim TS, Kim IO, Kim WS et al (1997) MR of childhood metachromatic leukodystrophy. AJNR 18:733–738

    PubMed  CAS  Google Scholar 

  58. Sener RN (2003) Metachromatic leukodystrophy. Diffusion MR imaging and proton MR spectroscopy. Acta Radiol 44:440–443

    Article  PubMed  CAS  Google Scholar 

  59. Watts RW, Spellacy E, Kendall BE et al (1981) Computed tomography studies on patients with mucopolysaccharidoses. Neuroradiology 21:9–23

    Article  PubMed  CAS  Google Scholar 

  60. Tzika AA, Ball WS Jr, Vigneron DB et al (1993) Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR 14:1267–1281; discussion 1282–1284

    PubMed  CAS  Google Scholar 

  61. Suchy SF, Olivos-Glander IM, Nussabaum RL (1995) Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum Mol Genet 4:2245–2250

    Article  PubMed  CAS  Google Scholar 

  62. Lowe CU, Terrey M, MacLachlan EA (1952) Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation: a clinical entity. AMA Am J Dis Child 83:164–184

    PubMed  CAS  Google Scholar 

  63. Carroll WJ, Woodruff WW, Cadman TE (1993) MR findings in oculocerebrorenal syndrome. AJNR 14:449–451

    PubMed  CAS  Google Scholar 

  64. Schneider JF, Boltshauser E, Neuhaus TJ et al (2001) MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics 32:45–48

    Article  PubMed  CAS  Google Scholar 

  65. Kim DS, Hayashi YK, Matsumoto H et al (2004) POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in alpha-DG. Neurology 62:1009–1011

    PubMed  CAS  Google Scholar 

  66. Kanoff RJ, Curless RG, Petito C et al (1998) Walker-Warburg syndrome: neurologic features and muscle membrane structure. Pediatr Neurol 18:76–80

    Article  PubMed  CAS  Google Scholar 

  67. Muntoni F, Brockington M, Torelli S et al (2004) Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol 17:205–209

    Article  PubMed  CAS  Google Scholar 

  68. Martin-Rendon E, Blake DJ (2003) Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends Pharmacol Sci 24:178–183

    Article  PubMed  CAS  Google Scholar 

  69. Dobyns WB, Pagon RA, Armstrong D et al (1989) Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 32:195–210

    Article  PubMed  CAS  Google Scholar 

  70. Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type – clinical, genetic and pathological considerations. Brain Dev 3:1–29

    PubMed  CAS  Google Scholar 

  71. Kondo-Iida E, Kobayashi K, Watanabe M et al (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8:2303–2309

    Article  PubMed  CAS  Google Scholar 

  72. Aida N (1998) Fukuyama congenital muscular dystrophy: a neuroradiologic review. J Magn Reson Imaging 8:317–326

    Article  PubMed  CAS  Google Scholar 

  73. Aida N, Tamagawa K, Takada K et al (1996) Brain MR in Fukuyama congenital muscular dystrophy. AJNR 17:605–613

    PubMed  CAS  Google Scholar 

  74. Aida N, Yagishita A, Takada K et al (1994) Cerebellar MR in Fukuyama congenital muscular dystrophy: polymicrogyria with cystic lesions. AJNR 15:1755–1759

    PubMed  CAS  Google Scholar 

  75. Santavuori P, Somer H, Sainio K et al (1989) Muscle-eye-brain disease (MEB). Brain Dev 11:147–153

    PubMed  CAS  Google Scholar 

  76. Santavuori P, Valanne L, Autti T et al (1998) Muscle-eye-brain disease: clinical features, visual evoked potentials and brain imaging in 20 patients. Eur J Paediatr Neurol 2:41–47

    Article  PubMed  CAS  Google Scholar 

  77. Valanne L, Pihko H, Katevuo K et al (1994) MRI of the brain in muscle-eye-brain (MEB) disease. Neuroradiology 36:473–476

    Article  PubMed  CAS  Google Scholar 

  78. Faerber EN, Poussaint TY (2002) Magnetic resonance of metabolic and degenerative diseases in children. Top Magn Reson Imaging 13:3–21

    Article  PubMed  Google Scholar 

  79. Barkovich AJ, Peck WW (1997) MR of Zellweger syndrome. AJNR 18:1163–1170

    PubMed  CAS  Google Scholar 

  80. Powers JM (1995) The pathology of peroxisomal disorders with pathogenetic considerations. J Neuropathol Exp Neurol 54:710–719

    Article  PubMed  CAS  Google Scholar 

  81. Poggi-Travert F, Fournier B, Poll-The BT et al (1995) Clinical approach to inherited peroxisomal disorders. J Inherit Metab Dis 18 [Suppl 1]:1–18

    Article  PubMed  Google Scholar 

  82. Paprocka J, Jamroz E, Adamek D et al (2007) Clinical and neuropathological picture of familial encephalopathy with bifunctional protein deficiency. Folia Neuropathol 45:213–219

    PubMed  Google Scholar 

  83. Jose da Rocha A, Tulio Braga F, Carlos Martins Maia A Jr et al (2008) Lactate detection by MRS in mitochondrial encephalopathy: optimization of technical parameters. J Neuroimaging 18:1–8

    Article  PubMed  Google Scholar 

  84. Majoie CB, Akkerman EM, Blank C et al (2002) Mitochondrial encephalomyopathy: comparison of conventional MR imaging with diffusion-weighted and diffusion tensor imaging: case report. AJNR 23:813–816

    PubMed  Google Scholar 

  85. Ohama E, Ohara S, Ikuta F et al (1987) Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol 74:226–233

    Article  PubMed  CAS  Google Scholar 

  86. Bianchi MC, Sgandurra G, Tosetti M et al (2007) Brain magnetic resonance in the diagnostic evaluation of mitochondrial encephalopathies. Biosci Rep 27:69–85

    Article  PubMed  CAS  Google Scholar 

  87. Pavlakis SG, Kingsley PB, Kaplan GP et al (1998) Magnetic resonance spectroscopy: use in monitoring MELAS treatment. Arch Neurol 55:849–852

    Article  PubMed  CAS  Google Scholar 

  88. Israels S, Haworth JC, Dunn HG et al (1976) Lactic acidosis in childhood. Adv Pediatr 22:267–303

    PubMed  CAS  Google Scholar 

  89. DiMauro S, Andreu AL, De Vivo DC (2002) Mitochondrial disorders. J Child Neurol 17 [Suppl 3]:3S35–3S45; discussion 3S46–3S47

    PubMed  Google Scholar 

  90. Sazgar M, Robinson JL, Chan AK et al (2003) Influenza B acute necrotizing encephalopathy: a case report and literature review. Pediatr Neurol 28:396–399

    Article  PubMed  Google Scholar 

  91. Arii J, Tanabe Y (2000) Leigh syndrome: serial MR imaging and clinical follow-up. AJNR 21:1502–1509

    PubMed  CAS  Google Scholar 

  92. Crimi M, Papadimitriou A, Galbiati S et al (2004) A new mitochondrial DNA mutation in ND3 gene causing severe Leigh syndrome with early lethality. Pediatr Res 55:842–846

    Article  PubMed  Google Scholar 

  93. Savoiardo M, Ciceri E, D’Incerti L et al (1995) Symmetric lesions of the subthalamic nuclei in mitochondrial encephalopathies: an almost distinctive mark of Leigh disease with COX deficiency. AJNR 16:1746–1747

    PubMed  CAS  Google Scholar 

  94. Detre JA, Wang ZY, Bogdan AR et al (1991) Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance spectroscopy. Ann Neurol 29:218–221

    Article  PubMed  CAS  Google Scholar 

  95. Grodd W, Krageloh-Mann I, Klose U et al (1991) Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology 181:173–181

    PubMed  CAS  Google Scholar 

  96. Krageloh-Mann I, Grodd W, Schoning M et al (1993) Proton spectroscopy in five patients with Leigh’s disease and mitochondrial enzyme deficiency. Dev Med Child Neurol 35:769–776

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This review is based on an electronic exhibit that won a Certificate of Merit at the Society for Pediatric Radiology meeting in Miami, FL, April 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Phelan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelan, J.A., Lowe, L.H. & Glasier, C.M. Pediatric neurodegenerative white matter processes: leukodystrophies and beyond. Pediatr Radiol 38, 729–749 (2008). https://doi.org/10.1007/s00247-008-0817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-008-0817-x

Keywords

Navigation