Skip to main content
Log in

Noninvasive Cerebral Oximeter as a Surrogate for Mixed Venous Saturation in Children

  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

We evaluated the relationship between regional cerebral oxygen saturation (rSO2) measured by near-infrared spectroscopy (NIRS) cerebral oximeter with superior vena cava (SVC), inferior vena cava (IVC), right atrium (RA), and pulmonary artery (PA) saturation measured on room air and 100% inspired oxygen administered via a non-rebreather mask (NRB) in children. Twenty nine pediatric post-orthotopic heart transplant patients undergoing an annual myocardial biopsy were studied. We found a statistically significant correlation between rSO2 and SVC saturations at room air and 100% inspired oxygen concentration via NRB (r = 0.67, p = 0.0002 on room air; r = 0.44, p = 0.02 on NRB), RA saturation (r = 0.56, p = 0.002; r = 0.56, p = 0.002), and PA saturation (r = 0.67, p < 0.001; r = 0.4, p = 0.03). A significant correlation also existed between rSO2 and measured cardiac index (r = 0.45, p = 0.01) and hemoglobin levels (r = 0.41, p = 0.02). The concordance correlations were fair to moderate. Bias and precision of rSO2 compared to PA saturations on room air were −0.8 and 13.9%, and they were 2.1 and 15.6% on NRB. A stepwise linear regression analysis showed that rSO2 saturations were the best predictor of PA saturations on both room air (p = 0.0001) and NRB (p = 0.012). In children with biventricular anatomy, rSO2 readings do correlate with mixed venous saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Abdul-Khaliq H, Schubert S, Troitzsch D, et al. (2001) Dynamic changes in cerebral oxygenation related to deep hypothermia and circulatory arrest evaluated by near-infrared spectroscopy. Acta Anaesth Scand 45:696–701

    Article  PubMed  CAS  Google Scholar 

  2. Abdul-Khaliq H, Troitzsch D, Schubert S, et al. (2002) Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Thorac Cardiovasc Surg 50:77–81

    Article  PubMed  CAS  Google Scholar 

  3. Andropoulos DB, Stayer SA, Diaz LK, Ramamoorthy C (2004) Neurological monitoring for congenital heart surgery. Anesth Analg 99:1365–1375

    Article  PubMed  Google Scholar 

  4. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  5. Boushel R, Langberg H, Olesen J, et al. (2000) Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 89:1869–1878

    Google Scholar 

  6. Casati A, Fenelli G, Pietropaoli P, Proeittu R (2004) Paper presented at the American Society of Anesthesiologists annual meeting, Las Vegas, NV

  7. de la Rocha AG, Edmonds JF, Williams WG, Poirier C, Trusler RN (1978) Importance of mixed venous oxygen saturation in the care of critically ill patients. Can J Surg 21:227–229

    Google Scholar 

  8. Edwards AD, Richardson C, Van der Zee P, et al. (1993) Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy. J Appl Physiol 75:1884–1889

    PubMed  CAS  Google Scholar 

  9. Fernandez EG, Green TP, Sweeney M (2004) Low inferior vena caval catheters for hemodynamic and pulmonary function monitoring in pediatric critical care patients. Pediatr Crit Care Med 5:14–18

    Article  PubMed  Google Scholar 

  10. Fortune PM, Wagstaff M, Petros AJ (2004) Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates. Intensive Care Med 27:1401–1407

    Google Scholar 

  11. Hampson NB, Piantadosi CA (1998) Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia. J Appl Physiol 64:2449–2457

    Google Scholar 

  12. Henson LC, Calalang C, Temp JA, Ward DS (1998) Accuracy of a cerebral oxmieter in healthy volunteers under conditions of isocapnic hypoxia. Anesthesiology 88:58–65

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman GM, Mussatto KA, Brosig CL, et al. (2005) Systemic venous oxygen saturation after the Norwood procedure and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg 130:1094–1100

    Article  PubMed  Google Scholar 

  14. Inomata S, Nishikawa T, Taguchi M (1994) Continuous monitoring of mixed venous oxygen saturation for detecting alterations in cardiac output after discontinuation of cardiopulmonary bypass. Br J Anaesth 72:11–16

    Article  PubMed  CAS  Google Scholar 

  15. Jobsis FF (1977) Non-invasive, infra-red monitoring of cerebral O2 sufficiency, blood volume HbO2-Hb shifts and blood flow. Acta Neurol Scand Suppl 64:452–453

    PubMed  CAS  Google Scholar 

  16. Kaiser JR, Gauss CH, Williams DK (2004) Surfactant administration acutely affects cerebral and systemic hemodynamics and gas exchange in very-low-birth-weight infants. J Pediatr 144:809–814

    PubMed  CAS  Google Scholar 

  17. Kasnitz P, Druger GL, Yorra F, Simmons DH (1976) Mixed venous oxygen tension and hyperlactatemia. Survival in severe cardiopulmonary disease. J Am Med Assoc 236:570–574

    Article  CAS  Google Scholar 

  18. Kazarian KK, Del Guercio LR (1980) The use of mixed venous blood gas determinations in traumatic shock. Ann Emerg Med 9:179–182

    Article  PubMed  CAS  Google Scholar 

  19. Kim MB, Ward DS, Cartwright CR, et al. (2000) Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput 16:191–199

    Article  PubMed  CAS  Google Scholar 

  20. Krauss XH, Verdouw PD, Hughenholtz PG, Nauta J (1975) Online monitoring of mixed venous oxygen saturation after cardiothoracic surgery. Thorax 30:636–643

    Article  PubMed  CAS  Google Scholar 

  21. Kremzar B, Spéac-Marn A, Kompan L, Cerovic O (1997) Normal values of SvO2 as therapeutic goal in patients with multiple injuries. Intensive Care Med 23:65–70

    Article  PubMed  CAS  Google Scholar 

  22. Krivec B, Vogá G, Podbregar M (2004) Monitoring mixed venous oxygen saturation in patients with obstructive stock after massive pulmonary embolism. Wiener Klin Wochenschrift 116:326–331

    Article  Google Scholar 

  23. Kurth CD, Steven JL, Montenegro LM, et al. (2001) Cerebral oxygen saturation before congenital heart surgery. Ann Thorac Surg 72:187–192

    Article  PubMed  CAS  Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  25. Lee J, Wright F, Barber R, Stanley L (1972) Central venous oxygen saturation shock: a study in man. Anesthesiology 36:472–478

    Article  PubMed  CAS  Google Scholar 

  26. Mahle WT, Tavani F, Zimmerman RA, et al. (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106:I109–I114

    PubMed  Google Scholar 

  27. Mancini DM, Bolinger L, Li H, et al. (1994) Validation of near-infrared spectroscopy in humans. J Appl Physiol 77:2740–2747

    PubMed  CAS  Google Scholar 

  28. McCormick PW, Stewart M, Goetting MG, Balakrishnan G (1991) Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. Stroke 22:596–602

    PubMed  CAS  Google Scholar 

  29. McCormick PW, Stewart M, Goetting MG, et al. (1991) Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med 19:89–97

    Article  PubMed  CAS  Google Scholar 

  30. McKinley BA, Marvin RG, Cocanour CS, Moore FA (2000) Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry. J Trauma-Injury Infect Crit Care 48:637–642

    Article  CAS  Google Scholar 

  31. Monk T, Weldon J, Van der Aa M (2002) Paper presented at the American Society of Anesthesiologists annual meeting, Orlando, Fl

  32. Nagdyman N, Fleck T, Barth S, et al. (2004) Relation of cerebral tissue oxygenation index to central venous oxygen saturation in children. Intensive Care Med 30:468–471

    Article  Google Scholar 

  33. Nollert G, Jonas RA, Reichart B (2000) Optimizing cerebral oxygenation during cardiac surgery: a review of experimental and clinical investigations with near infrared spectrophotometry. Thorac Cardiovasc Sur 48:247–253

    Article  CAS  Google Scholar 

  34. O’Connor TA, Hall RT (1994) Mixed venous oxygenation in critically ill neonates. Crit Care Med 22:343–346

    PubMed  CAS  Google Scholar 

  35. Pollard V, Prough DS, DeMelo AE, et al. (1996) Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo. Anesth Analg 82:269–277

    Article  PubMed  CAS  Google Scholar 

  36. Pollard V, Prough DS, DeMeIo AE, et al. (1996) The influence of carbon dioxide and body position on near infrared spectroscopic assessment of cerebral hemoglobin oxygen saturation. Anesth Analg 82:278–287

    Article  PubMed  CAS  Google Scholar 

  37. Powelson J, Maini BS, Bishop RL, Sottile FD (1992) Continuous monitoring of mixed venous oxygen saturation during aortic operations. Crit Care Med 20:332–336

    Article  CAS  Google Scholar 

  38. Prough DS, Pollard V (1995) Cerebral near-infrared spectroscopy: ready for prime time? Crit Care Med 23:1624–1626

    Article  PubMed  CAS  Google Scholar 

  39. Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM (1989) Comparison of central-Venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 95:1216–1221

    PubMed  CAS  Google Scholar 

  40. Rivers EP, Ander DS, Powell D (2001) Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 7:204–211

    Article  PubMed  CAS  Google Scholar 

  41. Schranz D, Schmitt S, Oelert H, et al. (1989) Continuous monitoring of mixed venous oxygen saturation in infants after cardiac surgery. Intensive Care Med 15:228:232

    Google Scholar 

  42. Sumimoto T, Takayama Y, Iwasaka T, et al. (1991) Mixed venous oxygen saturation as a guide to tissue oxygenation and prognosis in patients with acute myocardial infarction. Am Heart J 122:27–33

    Article  PubMed  CAS  Google Scholar 

  43. Teller J, Wolf M, Keel M, et al. (2000) Can near infrared spectroscopy of the liver monitor tissue oxygenation? Eur J Pediatr 159:549

    Article  PubMed  CAS  Google Scholar 

  44. Thayssen P, Klarholt E (1980) Relation between caval and pulmonary artery oxygen saturation in children. Br Heart J 43:574–578

    PubMed  CAS  Google Scholar 

  45. Thomsen A (1978) Calculation of oxygen saturation of mixed venous blood in infants. Scand J Clin Lab Invest 38:389–392

    PubMed  CAS  Google Scholar 

  46. Tortoriello T, Stayer SA, Mott AR, et al. (2005) A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Pediatr Anaesth 15:495–503

    Article  Google Scholar 

  47. Varela JE, Cohn SM, Giannotti GD, et al. (2001) Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Sur 129:363–370

    Article  CAS  Google Scholar 

  48. Watzmam HM, Kurth CD, Montenegro LM (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93:947–953

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the University of Arkansas for Medical Sciences College of Medicine Dean’s CUMG/Research Development Fund Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan T. Bhutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhutta, A.T., Ford, J.W., Parker, J.G. et al. Noninvasive Cerebral Oximeter as a Surrogate for Mixed Venous Saturation in Children. Pediatr Cardiol 28, 34–41 (2007). https://doi.org/10.1007/s00246-006-1379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-006-1379-z

Keywords

Navigation