Skip to main content

Advertisement

Log in

Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

We investigated the effects of oxalate on immediate early genes (IEGs) and stress protein HSP 70, commonly induced genes in response to a variety of stresses. LLC-PK1 cells were exposed to oxalate. Gene transcription and translation were monitored by Northern and Western blot analysis. RNA and DNA synthesis were assessed by [3H]-uridine and [3H]-thymidine incorporation, respectively. Oxalate exposure selectively increased the levels of mRNA encoding IEGs c-myc and c-jun as well as stress protein HSP 70. While expression of c-myc and c-jun was rapid (within 15 min to 2 h) and transient, HSP 70 expression was delayed (∼8 h) and stable. Furthermore, oxalate exposure resulted in delayed induction of generalized transcription by 18 h and reinitiation of the DNA synthesis by 24 h of oxalate exposure. Moreover, we show that prior induction of HSP 70 by mild hypertonic exposure protected the cells from oxalate toxicity. To the best of our knowledge this is the first study to demonstrate rapid IEG response and delayed heat-shock response to oxalate toxicity and protective role of HSP 70 against oxalate toxicity to renal epithelial cells. Oxalate, a metabolic end product, induces IEGs c-myc and c-jun and a delayed HSP 70 expression; While IEG expression may regulate additional genetic responses to oxalate, increased HSP 70 expression would serve an early protective role during oxalate stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  PubMed  CAS  Google Scholar 

  2. Ang D, Liberek K, Skowyra D, Zylicz M, Georgopoulos C (1991) Biological role and regulation of the universally conserved heat shock proteins. J Biol Chem 266:24233–24236

    PubMed  CAS  Google Scholar 

  3. Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    Article  PubMed  CAS  Google Scholar 

  4. Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  PubMed  CAS  Google Scholar 

  5. Capasso JM, Rivard JC, Berl T (2001) Long-term adaptation of renal cells to hypertonicity: role of MAP kinases and Na-K-ATPase. Am J Physiol Renal Physiol 280(5):F768–F776

    PubMed  CAS  Google Scholar 

  6. Cajone F, Salina M, Bernelli-Zazzera A (1988) C-myc gene expression in heat-adapted and heat-shocked cells. Cell Biol Int Rep 12:549–553

    Article  PubMed  CAS  Google Scholar 

  7. Chaturvedi L, Koul S, Sekhon A, Bhandari A, Menon M, Koul H (2002) Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem 277(15):13321–13330

    Article  PubMed  CAS  Google Scholar 

  8. Chomczynski P, Sacchi N (1994) Guanidine methods for total RNA preparation. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocol in molecular biology. Wiley, New York, pp 4.2.1–4.2.2

    Google Scholar 

  9. Cohen DM, Wasserman JC, Gullans SR (1991) Immediate early gene and HSP70 expression in hyperosmotic stress in MDCK cells. Am J Physiol 261:C594–C601

    PubMed  CAS  Google Scholar 

  10. Cohen DM, Gullans SR (1993) Urea selectively induces DNA synthesis in renal epithelial cells. Am J Physiol 264:F601–F607

    PubMed  CAS  Google Scholar 

  11. Hackett RL, Khan SR (1988) Presence of calcium oxalate crystals in the mammalian thyroid gland. Scanning Microsc 2:241–246

    PubMed  CAS  Google Scholar 

  12. Hammes MS, Lieske JC, Pawar S, Spargo BH, Toback FG (1995) Calcium oxalate monohydrate crystals stimulate gene expression in renal epithelial cells. Kidney Int 48:501–509

    Article  PubMed  CAS  Google Scholar 

  13. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    Article  PubMed  CAS  Google Scholar 

  14. Koul H, Huang M (2003) Oxalate exposure provokes the immediate early genes (c-myc and c-jun) and HSP70 response in LLC-PK1 cells, a line of renal epithelial cells. J Am Soc Nephrol 14:abstract# SO-PO760

    Google Scholar 

  15. Huang MY, Chaturvedi LS, Koul S, Koul HK (2005) Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Kidney Int 68(2):497–503

    Article  PubMed  CAS  Google Scholar 

  16. Iida S, Peck AB, Byer KJ, Khan SR (1999) Expression of bikunin mRNA in renal epithelial cells after oxalate exposure. J Urol 162:1480–1486

    Article  PubMed  CAS  Google Scholar 

  17. Johnson PF, McKnight SL (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58:799–839

    Article  PubMed  CAS  Google Scholar 

  18. Kao HT, Capasso O, Heintz N, Nevins JR (1985) Cell cycle control of the human HSP70 gene: implications for the role of a cellular E1A-like function. Mol Cell Biol 5:628–633

    PubMed  CAS  Google Scholar 

  19. Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610

    Article  PubMed  CAS  Google Scholar 

  20. Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71–79

    Article  PubMed  CAS  Google Scholar 

  21. Khan SR, Thamilselvan S (2000) Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol Urol 4:305–312

    PubMed  CAS  Google Scholar 

  22. Kingston RE, Baldwin AS Jr, Sharp PA (1984) Regulation of heat shock protein 70 gene expression by c-myc. Nature 312:280–282

    Article  PubMed  CAS  Google Scholar 

  23. Knight TF, Senekjian HO, Taylor K, Steplock DA, Weinman EJ (1979) Renal transport of oxalate: effects of diuretics, uric acid, and calcium. Kidney Int 16:572–576

    Article  PubMed  CAS  Google Scholar 

  24. Kohjimoto Y, Honeyman TW, Jonassen J, Gravel K, Kennington L, Scheid CR (2000) Phospholipase A2 mediates immediate early genes in cultured renal epithelial cells: possible role of lysophospholipid. Kidney Int 58:638–646

    Article  PubMed  CAS  Google Scholar 

  25. Koul H, Menon M, Scheid C (1996) Oxalate and renal tubular cells: a complex interaction. Ital J Miner Electrolyte Metab 10:67–74

    Google Scholar 

  26. Koul H (1999) Idiopathic calcium oxalate urolithiasis: Y2K update. In: Proceedings of the international CME in urology, pp 89–97

  27. Koul H, Ebisuno S, Renzulli L, Yanagawa M, Menon M, Scheid C (1994) Polarized distribution of oxalate transport systems in LLC-PK1 cells, a line of renal epithelial cells. Am J Physiol 266:F266–F274

    PubMed  CAS  Google Scholar 

  28. Koul H, Kennington L, Nair G, Honeyman T, Menon M, Scheid C (1994) Oxalate-induced initiation of DNA synthesis in LLC-PK1 cells, a line of renal epithelial cells. Biochem Biophys Res Commun 205:1632–1637

    Article  PubMed  CAS  Google Scholar 

  29. Koul H, Menon M, Chaturvedi L, Koul S, Sekhon A, Bhandari A, Haung M (2002) Activation of the p38-MAP kinase signal transduction pathways by COM-crystals. J Biol Chem 277(39):36845–36852

    Article  PubMed  CAS  Google Scholar 

  30. Koul S, Chaturved LS, Sekhon A, Bhandari A, Menon M, Koul HK (2002) Effect of oxalate on the re-initiation of DNA synthesis in LLC-PK1 cells do not involve p42/44 MAP kinase activation. Kidney Int 61:525–533

    Article  PubMed  CAS  Google Scholar 

  31. Kuo SM, Aronson PS (1996) Pathways for oxalate transport in rabbit renal microvillus membrane vesicles. J Biol Chem 271:15491–15497

    Article  PubMed  CAS  Google Scholar 

  32. Lieske JC, Hammes MS, Hoyer JR, Toback FG (1997) Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Kidney Int 51:679–686

    Article  PubMed  CAS  Google Scholar 

  33. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  34. Milarski KL, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83:9517–9521

    Article  PubMed  CAS  Google Scholar 

  35. Misfeldt DS, Sanders MJ (1981) Transepithelial transport in cell culture: d-glucose transport by a pig kidney cell line (LLC-PK1). J Membr Biol 59:13–18

    Article  PubMed  CAS  Google Scholar 

  36. Ono K, Yasukohchi A, Kikawa K (1987) Pathogenesis of acquired renal cysts in hemodialysis patients. The role of oxalate crystal deposition in renal tubules. ASAIO Trans 33:245–249

    PubMed  CAS  Google Scholar 

  37. Radi MJ (1989) Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch Pathol Lab Med 113:1367–1369

    PubMed  CAS  Google Scholar 

  38. Rangnekar VM, Aplin AC, Sukhatme VP (1990) The serum and TPA responsive promoter and intron–exon structure of EGR2, a human early growth response gene encoding a zinc finger protein. Nucleic Acids Res 18:2749–2757

    Article  PubMed  CAS  Google Scholar 

  39. Robertson WG, Peacock M, Heyburn PJ, Marshall RW, Rutherford A, Williams RE, Clark PB (1979) The significance of mild hyperoxaluria in calcium stone-formation. In: Rose GA, Robertson WG, Watts REW (eds) Oxalate in human biochemistry and clinical pathology. The Welcome Foundation Ltd, London, p 173

    Google Scholar 

  40. Ryseck RP, Hirai SI, Yaniv M, Bravo R (1988) Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature 334:535–537

    Article  PubMed  CAS  Google Scholar 

  41. Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, Jonassen J, Menon M (1996) Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int 49:413–419

    Article  PubMed  CAS  Google Scholar 

  42. Sheikh-Hamad D, Garcia-Perez A, Ferraris JD, Peters EM, Burg MB (1994) Induction of gene expression by heat shock versus osmotic stress. Am J Physiol 267:F28–F34

    PubMed  CAS  Google Scholar 

  43. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    Article  PubMed  CAS  Google Scholar 

  44. Truong LD, Cartwright J Jr, Alpert L (1992) Calcium oxalate in breast lesions biopsied for calcification detected in screening mammography: incidence and clinical significance. Mod Pathol 5:146–152

    PubMed  CAS  Google Scholar 

  45. Welch WJ (1991) The role of heat-shock proteins as molecular chaperones. Curr Opin Cell Biol 3:1033–1038

    Article  PubMed  CAS  Google Scholar 

  46. Welch WJ, Kang HS, Beckmann RP, Mizzen LA (1991) Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. Curr Top Microbiol Immunol 167:31–55

    PubMed  CAS  Google Scholar 

  47. Wu BJ, Morimoto RI (1985) Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci USA 82:6070–6074

    Article  PubMed  CAS  Google Scholar 

  48. Wu BJ, Kingston RE, Morimoto RI (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci USA 83:629–633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grant to Dr. Koul from National Institutes of Health (NIH-DK-RO1-54084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari K. Koul.

Additional information

Sweaty Koul and Meiyi Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koul, S., Huang, M., Bhat, S. et al. Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity. Urol Res 36, 1–10 (2008). https://doi.org/10.1007/s00240-007-0130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-007-0130-4

Keywords

Navigation