Skip to main content
Log in

A Molecular Footprint of Limb Loss: Sequence Variation of the Autopodial Identity Gene Hoxa-13

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The homeobox gene Hoxa-13 codes for a transcription factor involved in multiple functions, including body axis and hand/foot development in tetrapods. In this study we investigate whether the loss of one function (e.g., limb loss in snakes) left a molecular footprint in exon 1 of Hoxa-13 that could be associated with the release of functional constraints caused by limb loss. Fragments of the Hoxa-13 exon 1 were sequenced from 13 species and analyzed, with additional published sequences of the same region, using relative rates and likelihood-ratio tests. Five amino acid sites in exon 1 of Hoxa-13 were detected as evolving under positive selection in the stem lineage of snakes. To further investigate whether there is an association between limb loss and sequence variation in Hoxa-13, we used the random forest method on an alignment that included shark, basal fish lineages, and “eu-tetrapods” such as mammals, turtle, alligator, and birds. The random forest method approaches the problem as one of classification, where we seek to predict the presence or absence of autopodium based on amino acid variation in Hoxa-13 sequences. Different alignments tested were associated with similar error rates (18.42%). The random forest method suggested that phenotypic states (autopodium present and absent) can often be correctly predicted based on Hoxa-13 sequences. Basal, nontetrapod gnathostomes that never had an autopodium were consistently classified as limbless together with the snakes, while eu-tetrapods without any history of limb loss in their phylogeny were also consistently classified as having a limb. Misclassifications affected mostly lizards, which, as a group, have a history of limb loss and limb re-evolution, and the urodele and caecilian in our sample. We conclude that a molecular footprint can be detected in Hoxa-13 that is associated with the lack of an autopodium; groups with classification ambiguity (lizards) are characterized by a history of repeated limb loss and possible limb re-evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Apesteguía S, Zaher H (2006) A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature 440:1037–1040

    Article  PubMed  Google Scholar 

  • Arbiza L, Dopazo J, Dopazo H (2006) Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PloS Comput Biol 2(4):e38/0238-0300. doi:10.1371/journal.pcbi.0020038

  • Bejder L, Hall BK (2002) Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evol Dev 4(6):445–458

    Article  PubMed  Google Scholar 

  • Brandley MC, Huelsenbeck JP, Wiens JJ (2008) Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution 62:2042–2064

    Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    Google Scholar 

  • Breiman L (2001a) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L (2001b) Statistical modeling: the two cultures. Stat Sci 16:199–215

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth and Brooks, Pacific Grove, CA

    Google Scholar 

  • Breiman L, Cutler A, Liaw A, Wiener M (2007) Available at: http://cran.r-project.org/src/contib/Descriptions/randomForest.html

  • Bull JJ, Charnov EL (1985) On irreversible evolution. Evolution 39:1149–1155

    Article  Google Scholar 

  • Caldwell MW (2003) ‘Without a leg to stand on’: on the evolution and development of axial elongation and limblessness in tetrapods. Can J Earth Sci 40:573–588

    Article  Google Scholar 

  • Caldwell MW, Lee MSY (1997) A snake with legs from the marine Cretaceous of the Middle East. Nature 386:705–709

    Article  CAS  Google Scholar 

  • Carroll SB (2005) Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. W. W Norton, New York

    Google Scholar 

  • Clark LA, Pregibon D (1993) Tree-based models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Chapman and Hall, London, pp 377–419

    Google Scholar 

  • Coates M, Rutta M (2000) Nice snake, shame about the legs. TREE 15:503–507

    PubMed  Google Scholar 

  • Cummings MP, Myers DS (2004) Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinformatics 5:132

    Article  PubMed  Google Scholar 

  • Cummings MP, Segal MR (2004) Few amino acid positions in rpoB are associated with most of the rifampin resistance in Mycobacterium tuberculosis. BMC Bioinformatics 5:137

    Article  PubMed  Google Scholar 

  • Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375(6534):791–795

    Article  PubMed  CAS  Google Scholar 

  • Davis MC, Dahn RD, Shubin NH (2007) An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447:473–476

    Article  PubMed  CAS  Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl 1994:135–142

    Google Scholar 

  • Favier B, Rijli FM, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P (1996) Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development 122(2):449–460

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P (1996) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122:2997–3011

    PubMed  CAS  Google Scholar 

  • Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan FR, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E (2006) Early evolution of the venom system in lizards and snakes. Nature 439(7076):584–588

    Article  PubMed  CAS  Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41(1):18–32

    Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42(3):265–292

    Google Scholar 

  • Garland T Jr, Midford PE, Ives AR (1999) An introduction to phylogenentically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39:374–388

    Google Scholar 

  • Graur D, Li WH (2000) Fundamentals of molecular evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Greene HW (1997) Snakes—the evolution of mystery in nature. University of California Press, Berkeley

    Google Scholar 

  • Greene HW, Cundall D (2000) Evolutionary biology: limbless tetrapods and snakes with legs. Science 287:1939–1941

    Article  PubMed  CAS  Google Scholar 

  • Greer AE (1991) Limb reduction in squamates: identification of the lineages and discussion of the trends. J Herpetol 25:166–173

    Article  Google Scholar 

  • Greer AE (1992) Hyperphalangy in squamates: insights on the re-acquisition of primitive character states in limb-reduced lineages. J Herpetol 26:327–329

    Article  Google Scholar 

  • Hastie TJ, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  • Hérault Y, Beckers J, Gérard M, Duboule D (1999) Hox gene expression in limbs: colinearity by opposite regulatory controls. Dev Biol 208:157–165

    Article  PubMed  Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL-V-improved software for multiple sequence alignment. Comp Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  • Honda M, Ota H, Kobayashi M, Nabhitabhata J, Yong HS, Hikida T (2000) Phylogenetic relationships, character evolution, and biogeography of the subfamily Lygosominae (Reptilia: Scincidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 15(3):452–461

    Article  PubMed  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Innis JW, Margulies EH, Kardia S (2002) Integrative biology and the developing limb bud. Evol Dev 4(5):378–389

    Article  PubMed  CAS  Google Scholar 

  • Innis JW, Mortlock D, Chen Z, Ludwig M, Williams ME, Williams TM, Doyle CD, Shao Z, Glynn M, Mikulic D, Lehmann K, Mundlos S, Utsch B (2004) Polyalanine expansion in Hoxa-13: three new affected families and the molecular consequences in a mouse model. Hum Mol Genet 13(22):2841–2851

    Article  PubMed  CAS  Google Scholar 

  • Kearney M, Stuart BL (2004) Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc Roy Soc Lond B 271:1677–1683

    Article  Google Scholar 

  • Knosp WM, Scott V, Bäcgubger GO, Stadler HS (2004) HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis. Development 131:4581–4592

    Article  PubMed  CAS  Google Scholar 

  • Kohlsdorf T, Wagner GP (2006) Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (Gymnophthalmidae, Squamata). Evolution 60(9):1896–1912

    PubMed  Google Scholar 

  • Kumazawa Y (2007) Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene 388:19–26

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1978) Evolutionary mechanisms of limb loss in tetrapods. Evolution 32:73–92

    Article  Google Scholar 

  • Lee MSY, Scanlon JD, Caldwell MW (2000) Snake origins. Science 288:1343–1345

    Article  PubMed  CAS  Google Scholar 

  • Lynch VJ, Roth JJ, Takahashi K, Dunn C, Nonaka DF, Stopper G, Wagner GP (2004) Adaptive evolution of Hoxa-11 and Hoxa-13 at the origin of the uterus in mammals. Proc Roy Soc Lond B 271:2201–2207

    Article  CAS  Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Maddison WP, Maddison DR (2004) Available at: http://mesquiteproject.org

  • Marshall CR, Raff EC, Raff RA (1994) Dollo’s law and the death and resurrection of genes. Proc Natl Acad Sci USA 91:12283–12287

    Article  PubMed  CAS  Google Scholar 

  • Metscher BD, Takahashi K, Crow K, Amemiya C, Nonaka DF, Wagner GP (2005) Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finned fish, Polyodon spathula: implications for the origin of tetrapod limbs. Evol Dev 7(3):186–195

    Article  PubMed  CAS  Google Scholar 

  • Mortlock DP, Innis JW (1997) Mutation of HOXA-13 in hand-foot-genital syndrome. Nat Genet 15:179–180

    Article  PubMed  CAS  Google Scholar 

  • Mortlock DP, Sateesh P, Innis JW (2000) Evolution of N-terminal sequences of the vertebrate Hoxa-13 protein. Mammal Gen 11:151–158

    Article  CAS  Google Scholar 

  • Nelson CE, Morgan BA, Burke AC, Laufer E, DiMambro E, Murtaugh LC, Gonzales E, Tessarollo L, Parada LF, Tabin C (1996) Analysis of Hox gene expression in the chick limb bud. Development 122:1449–1466

    PubMed  CAS  Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679. doi:10.1093/bioinformatics/bti079

    Article  PubMed  CAS  Google Scholar 

  • Post LC, Innis JW (1999) Altered Hox expression and increased cell death distinguish Hypodactyly from Hoxa13 null mice. Int J Dev Biol 43:287–294

    PubMed  CAS  Google Scholar 

  • Pough FH, Andrews RM, Cadle JE, Crump ML, Savitzki AH, Wells KD (1998) Herpetology. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Rage JC (2001) Fossil history. In: Seigel RA, Collins JT, Novak SS (eds) Snakes—ecology and evolutionary biology. Blackburn Press, Caldwell, NJ

    Google Scholar 

  • Rage JC, Escuillié F (2000) Un nouveau serpent bipède du Cénomanien (Crétacé) Implications phylétiques. CR Acad Sci Paris 330:513–520

    Google Scholar 

  • Rechavi MR, Huchon D (2000) RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297

    Article  Google Scholar 

  • Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121:3163–3174

    PubMed  CAS  Google Scholar 

  • Robinson M, Gouy M, Gautier C, Mouchiroud D (1998) Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15(9):1091–1098

    PubMed  CAS  Google Scholar 

  • Segal MR, Cummings MP, Hubbard AE (2001) Relating genotype to phenotype: analysis of peptide binding data. Biometrics 57:632–643

    Article  PubMed  CAS  Google Scholar 

  • Shubin NH, Alberch P (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol Biol 20:319–387

    Google Scholar 

  • Stadler HS, Higgins KM, Capecchi MR (2001) Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa-13 mutant limbs. Development 128:4177–4188

    PubMed  CAS  Google Scholar 

  • Stopper GS, Wagner GP (2005) Of chicken wings and frog legs: a somrgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev Biol 288:21–39

    Article  PubMed  CAS  Google Scholar 

  • Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL (2000) A fossil snake with limbs. Science 287:2010–2012

    Article  PubMed  CAS  Google Scholar 

  • Teotónio H, Rose MR (2001) Perspective: reverse evolution. Evolution 55(4):653–660

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Torok MA, Gardiner DM, Shubin NH, Bryant SV (1998) Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol 200:225–233

    Article  PubMed  CAS  Google Scholar 

  • Veraksa A, Campo MD, McGinnis W (2000) Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab 69:85–100

    Article  PubMed  CAS  Google Scholar 

  • Vidal N, Hedges BS (2005) The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol 328:1000–1008

    CAS  Google Scholar 

  • Wagner GP, Lynch VJ (2008) The gene regulatory logic of transcription factor evolution. Tree 23(7):377–385

    PubMed  Google Scholar 

  • Wagner GP, Khan PA, Blanco MJ, Misof G, Liversage RA (1999) Evolution of Hoxa-11 expression in amphibians: is the urodele autopodium an innovation? Am Zool 39:686–694

    Google Scholar 

  • Wagner GP, Takahashi K, Lynch VJ, Prohaska SJ, Fried C, Stadler PF, Amemiya C (2005) Molecular evolution of duplicated ray finned fish HoxA clusters: increased synonymous substitution rate and asymmetrical co-divergence of coding and noncoding sequences. J Mol Evol 60:665–676

    Article  PubMed  CAS  Google Scholar 

  • Wake DB, Marks SB (1993) Development and evolution of plethodontid salamanders—a review of prior studies and a prospectus for future research. Herpetologica 49:194–203

    Google Scholar 

  • Wake DB, Shubin N (1994) Urodele limb development in relation to phylogeny and life history. J Morphol 220:407–408

    Google Scholar 

  • West-Eberhard M (2003) Developmental plasticity and evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Whiting AS, Bauer AM, Sites JW (2003) Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Mol Phylogenet Evol 29:582–598

    Article  PubMed  CAS  Google Scholar 

  • Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60:123–141

    PubMed  Google Scholar 

  • Wright S (1968) Evolution and the genetics of populations, vol I. Genetic and biometric foundations, University of Chicago Press, Chicago

    Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comp Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yokouchi Y, Nakazato S, Yamamoto M, Goto Y, Kameda T, Iba H, Kuroiwa A (1995) Misexpression of Hoxa–13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Gen Dev 9:2509–2522

    Article  CAS  Google Scholar 

  • Young BA, Marsit C, Meltzer K (1999) Comparative morphology of the cloacal scent gland in snakes (Serpentes: Reptilia). Anat Rec 256(2):127–138

    Article  PubMed  CAS  Google Scholar 

  • Zákány J, Duboule D (1999) Hox genes in digit development and evolution. Cell Tissue Res 296:19–25

    Article  PubMed  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank K. Crow for help with lab molecular techniques and discussion of results, and Jacques Gauthier and Greg Watkins-Colwell (Yale Peabody Museum), Adalgisa Caccono (Yale University EEB), and David Wake (Museum of Vertebrate Zoology, University of California, Berkeley) for donation of tissue samples. We thank Drs. H. Greene, J. Gauthier, and P. Weldon for discussion of morphological patterns in snakes, Dr. K. Schwenk for discussion of phylogenetic relationships in Squamata, and M. Conte for assistance with some of the analyses. T.K. was supported by a CNPq/Brazil postdoctoral fellowship (PDE-201244/2003-9) and is supported by a FAPESP/Brazil grant (05/60140-4); G.P.W. is supported by a NSF/USA grant (IOB-0445971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter P. Wagner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlsdorf, T., Cummings, M.P., Lynch, V.J. et al. A Molecular Footprint of Limb Loss: Sequence Variation of the Autopodial Identity Gene Hoxa-13 . J Mol Evol 67, 581–593 (2008). https://doi.org/10.1007/s00239-008-9156-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9156-7

Keywords

Navigation