Skip to main content
Log in

Evolution of Vertebrate Indoleamine 2,3-Dioxygenases

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the same reaction, the first step in tryptophan catabolism via the kynurenine pathway. TDO is widely distributed among life-forms, being found not only in eukaryotes but also in bacteria. In contrast, IDO has been found only in mammals and yeast to date. However, recent genome and EST projects have identified IDO homologues in non-mammals and found an IDO paralogue that is expressed in mice. In this study, we cloned the frog and fish IDO homologues and the mouse IDO paralogue, and characterized their enzymatic properties using recombinants. The IDOs of lower vertebrates and the mouse IDO paralogue had IDO activity but had 500–1000 times higher K m values and very low enzyme efficiency compared with mammalian IDOs. It appears that L-Trp is not a true substrate for these enzymes in vivo, although their actual function is unknown. On the phylogenetic tree, these low-activity IDOs, which we have named “proto-IDOs,” formed a cluster that was distinct from the mammalian IDO cluster. The IDO and proto-IDO genes are present tandemly on the chromosomes of mammals, including the marsupial opossum, whereas only the proto-IDO gene is observed in chicken and fish genomes. These results suggest that (mammalian) IDOs arose from proto-IDOs by gene duplication that occurred before the divergence of marsupial and eutherian (placental) mammals in mammalian evolutionary history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ball HJ, Sanchez-Perez A, Weiser S, Austin CJD, Astelbauer F, Miu J, McQuillan JA, Stocker R, Jermiin LS, Hunt NH (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396:203–213

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Fabrick JA, Kanost MR, Baker JE (2004) RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. J Insect Sci 4:15

    PubMed  Google Scholar 

  • Forouhar F, Anderson JL, Mowat CG, Vorobiev SM, Hussain A, Abashidze M, Bruckmann C, Thackray SJ, Seetharaman J, Tucker T, Xiao R, Ma LC, Zhao L, Acton TB, Montelione GT, Chapman SK, Tong L (2007) Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 104:473–478

    Article  PubMed  CAS  Google Scholar 

  • Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248

    Article  PubMed  CAS  Google Scholar 

  • Hinds LA, Poole WE, Tyndale-Biscoe CH, van Oorschot RAH, Cooper DW (1990) Reproductive biology and the potential for genetic studies in the tammar wallaby, Macropus eugenii. Aust J Zool 37:223–234

    Article  Google Scholar 

  • Hu X, Bao Z, Hu J, Shao M, Zhang L, Bi K, Zhan A, Huang X (2006) Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquat Res 37:1187–1194

    Article  CAS  Google Scholar 

  • Ishimura Y, Nozaki M, Hayaishi O (1970) The oxygenated form of L-tryptophan 2,3-dioxygenase as reaction intermediate. J Biol Chem 245:3593–3602

    PubMed  CAS  Google Scholar 

  • Iwamoto Y, Lee IS, Tsubaki M, Kido R (1995) Tryptophan 2,3-dioxygenase in Saccharomyces cerevisiae. Can J Microbiol 41:19–26

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Masayama I (1936) The intermediary metabolism of tryptophan. XVIII. The mechanism of formation of kynurenine from tryptophan. Z Physiol Chem 243:237–244

    CAS  Google Scholar 

  • Lake JA (1991) The order of sequence alignment can bias the selection of tree topology. Mol Biol Evol 8:378–385

    PubMed  CAS  Google Scholar 

  • Littlejohn TK, Takikawa O, Skylas D, Jamie JF, Walker MJ, Truscott RJ (2000) Expression and purification of recombinant human indoleamine 2,3-dioxygenase. Protein Expr Purif 19:22–29

    Article  PubMed  CAS  Google Scholar 

  • Littlejohn TK, Takikawa O, Truscott RJ, Walker MJ (2003) Asp274 and His346 are essential for heme binding and catalytic function of human indoleamine 2,3-dioxygenase. J Biol Chem 278:29525–29531

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen MD, Brown SJ, Denell RE, Beeman RW (2002) Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase. Genetics 160:225–234

    PubMed  CAS  Google Scholar 

  • Matsumura M, Osada K, Aiba S (1984) L-tryptophan 2,3-dioxygenase of a moderate thermophile, Bacillus brevis. Purification, properties and a substrate-mediated stabilization of the quaternary structure. Biochim Biophys Acta 786:9–17

    PubMed  CAS  Google Scholar 

  • Mukabayire O, Cornel AJ, Dotson EM, Collins FH, Besansky NJ (1996) The Tryptophan oxygenase gene of Anopheles gambiae. Insect Biochem Mol Biol 26:525–528

    Article  PubMed  CAS  Google Scholar 

  • Murray MF (2007) The human indoleamine (2,3)-dioxygenase gene and related human genes. Curr Drug Metab 8:91–107

    Article  Google Scholar 

  • Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Becam AM, Rytka J, Herbert CJ (2002) Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett 517:97–102

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou ND, Mewies M, McLean KJ, Seward HE, Svistunenko DA, Munro AW, Raven EL (2005) Redox and spectroscopic properties of human indoleamine 2,3-dioxygenase and a His303Ala variant: implications for catalysis. Biochemistry 44:14318–14328

    Article  PubMed  CAS  Google Scholar 

  • Reed RD, Nagy LM (2005) Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evol Dev 7:301–311

    Article  PubMed  CAS  Google Scholar 

  • Schutz G, Feigelson P (1972) Purification and properties of rat liver tryptophan oxygenase. J Biol Chem 247:5327–5332

    PubMed  CAS  Google Scholar 

  • Searles LL, Voelker RA (1986) Molecular characterization of the Drosophila vermilion locus and its suppressible alleles. Proc Natl Acad Sci USA 83:404–408

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Nomiyama S, Hirata F, Hayaishi O (1978) Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem 253:4700–4706

    PubMed  CAS  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2887

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Imai K (1998) Evolution of myoglobin. Cell Mol Life Sci 54:979–1004

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Takagi T (1992) A myoglobin evolved from indoleamine 2,3-dioxygenase. J Mol Biol 228:698–700

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kawamichi H, Imai K (1998) A myoglobin evolved from indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme. Comp Biochem Physiol B 121:117–128

    Article  PubMed  CAS  Google Scholar 

  • Takikawa O (2005) Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun 338:12–29

    Article  PubMed  CAS  Google Scholar 

  • Vottero E, Mitchell DA, Page MJ, MacGillivray RT, Sadowski IJ, Roberge M, Mauk AG (2006) Cytochrome b 5 is a major reductant in vivo of human indoleamine 2,3-dioxygenase expressed in yeast. FEBS Lett 580:2265–2268

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Hayaishi O (1967) Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J Biol Chem 242:2560–2566

    Google Scholar 

  • Yuasa HJ, Suzuki T (2005) Do molluscs possess indoleamine 2,3-dioxygenase? Comp Biochem Physiol B 140:445–454

    Article  PubMed  CAS  Google Scholar 

  • Yuasa HJ, Hasegawa T, Nakamura T, Suzuki T (2007) Bacterial expression and characterization of molluscan IDO-like myoglobin. Comp Biochem Physiol B 146:461–469

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kang SA, Mukherjee T, Bale S, Crane BR, Begley TP, Ealick SE (2007) Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis. Biochemistry 46:145–155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by a Grant-in-Aid for Young Scientists B (to H.J.Y.) from the Japan Society for the Promotion of Science (KAKENHI 17770205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Julie Yuasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuasa, H.J., Takubo, M., Takahashi, A. et al. Evolution of Vertebrate Indoleamine 2,3-Dioxygenases. J Mol Evol 65, 705–714 (2007). https://doi.org/10.1007/s00239-007-9049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9049-1

Keywords

Navigation