Skip to main content
Log in

On connectedness of sets in the real spectra of polynomial rings

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let R be a real closed field. The Pierce–Birkhoff conjecture says that any piecewise polynomial function f on R n can be obtained from the polynomial ring R[x 1,..., x n ] by iterating the operations of maximum and minimum. The purpose of this paper is threefold. First, we state a new conjecture, called the Connectedness conjecture, which asserts, for every pair of points \({{\alpha,\beta\in\,{\rm {Sper}}\ R[x_1,\ldots,x_n]}}\) , the existence of connected sets in the real spectrum of R[x 1,..., x n ], satisfying certain conditions. We prove that the Connectedness conjecture implies the Pierce–Birkhoff conjecture. Secondly, we construct a class of connected sets in the real spectrum which, though not in itself enough for the proof of the Pierce–Birkhoff conjecture, is the first and simplest example of the sort of connected sets we really need, and which constitutes the first step in our program for a proof of the Pierce–Birkhoff conjecture in dimension greater than 2. Thirdly, we apply these ideas to give two proofs that the Connectedness conjecture (and hence also the Pierce–Birkhoff conjecture in the abstract formulation) holds locally at any pair of points \({{\alpha,\beta\in\,{\rm {Sper}}\ R[x_1,\ldots,x_n]}}\) , one of which is monomial. One of the proofs is elementary while the other consists in deducing this result as an immediate corollary of the main connectedness theorem of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvis D., Johnston B., Madden J.J.: Local structure of the real spectrum of a surface, infinitely near points and separating ideals. J. Reine Angew. Math. 167, 160–196 (1931)

    Google Scholar 

  2. Andradas C., Bröcker L., Ruiz J.M.: Constructible Sets in Real Geometry. Springer, Berlin (1996)

    MATH  Google Scholar 

  3. Baer, R.: Uber nicht-archimedisch geordnete Körper (Beitrage zur Algebra). Sitz. Ber. Der Heidelberger Akademie, 8 Abhandl. (1927)

  4. Birkhoff G., Pierce R.: Lattice-ordered rings. Ann. Acad. Brasil Ciênc. 28, 41–69 (1956)

    MathSciNet  Google Scholar 

  5. Bochnak J., Coste M., Roy M.-F.: Géométrie algébrique réelle. Springer, Berlin (1987)

    MATH  Google Scholar 

  6. Delzell C.N.: On the Pierce–Birkhoff conjecture over ordered fields. Rocky Mt. J. Math. 19(3), 651–668 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fuchs L.: Telweise geordnete algebraische Strukturen. Vandenhoeck and Ruprecht, Göttingen (1966)

    Google Scholar 

  8. Henriksen M., Isbell J.: Lattice-ordered rings and function rings. Pac. J. Math. 11, 533–566 (1962)

    MathSciNet  Google Scholar 

  9. Kaplansky I.: Maximal fields with valuations I. Duke Math. J. 9, 303–321 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaplansky I.: Maximal fields with valuations II. Duke Math. J. 12, 243–248 (1945)

    Article  MathSciNet  Google Scholar 

  11. Krull W.: Allgemeine Bewertungstheorie. J. Reine Angew. Math. 167, 160–196 (1932)

    Google Scholar 

  12. Lucas, F., Madden, J.J., Schaub, D., Spivakovsky, M.: On the Pierce–Birkhoff and the separation conjecture in dimension 3 (in preparation)

  13. Madden J.J.: Pierce–Birkhoff rings. Arch. Math. 53, 565–570 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Madden, J.J.: The Pierce–Birkhoff conjecture for surfaces (unpublished preprint)

  15. Mahé L.: On the Pierce–Birkhoff conjecture. Rocky Mt. J. Math. 14, 983–985 (1984)

    MATH  Google Scholar 

  16. Mahé L.: On the Pierce–Birkhoff conjecture in three variables. J. Pure Appl. Algebra 211, 459–470 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marshall M.: The Pierce–Birkhoff conjecture for curves. Can. J. Math. 44, 1262–1271 (1992)

    MATH  Google Scholar 

  18. Prestel A.: Lectures on Formally Real Fields, Lecture Notes in Math. Springer, Berlin (1984)

    Google Scholar 

  19. Prestel, A., Delzell, C.N.: Positive Polynomials, Springer monographs in mathematics. Springer, Berlin (2001)

  20. Priess-Crampe S.: Angeordnete strukturen: gruppen, körper, projektive Ebenen. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. Schwartz N.: Real Closed Spaces. Habilitationsschrift, München (1984)

    MATH  Google Scholar 

  22. Spivakovsky, M.: A solution to Hironaka’s polyhedra game. In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry, vol. II. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, pp. 419–432. Birkhäuser, Basel (1983)

  23. Zariski O., Samuel P.: Commutative Algebra. Springer, Berlin (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Spivakovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, F., Madden, J.J., Schaub, D. et al. On connectedness of sets in the real spectra of polynomial rings. manuscripta math. 128, 505–547 (2009). https://doi.org/10.1007/s00229-008-0244-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0244-1

Mathematics Subject Classification (2000)

Navigation