Skip to main content

Advertisement

Log in

Mechanism-based population pharmacokinetic and pharmacodynamic modeling of intravenous and intranasal dexmedetomidine in healthy subjects

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Dexmedetomidine is an α2-adrenoceptor agonist used for perioperative and intensive care sedation. This study develops mechanism-based population pharmacokinetic-pharmacodynamic models for the cardiovascular and central nervous system (CNS) effects of intravenously (IV) and intranasally (IN) administered dexmedetomidine in healthy subjects.

Method

Single doses of 84 μg of dexmedetomidine were given once IV and once IN to six healthy men. Plasma dexmedetomidine concentrations were measured for 10 h along with plasma concentrations of norepinephrine (NE) and epinephrine (E). Blood pressure, heart rate, and CNS drug effects (three visual analog scales and bispectral index) were monitored to assess the pharmacological effects of dexmedetomidine. PK-PD modeling was performed for recently published data (Eur J Clin Pharmacol 67: 825, 2011).

Results

Pharmacokinetic profiles for both IV and IN doses of dexmedetomidine were well fitted using a two-compartment PK model. Intranasal bioavailability was 82 %. Dexmedetomidine inhibited the release of NE and E to induce their decline in blood. This decrease in NE was captured with an indirect response model. The concentrations of the mediator NE served via a biophase/transduction step and nonlinear pharmacologic functions to produce reductions in blood pressure and heart rate, while a direct effect model was used for the CNS effects.

Conclusion

The comprehensive panel of two biomarkers and seven response measures were well captured by the population PK/PD models. The subjects were more sensitive to the CNS (lower EC 50 values) than cardiovascular effects of dexmedetomidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chrysoslomou C, Schmitt GG (2008) Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol 4:619–627

    Article  Google Scholar 

  2. Limbird LE (1988) Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J 2:2686–2695

    CAS  PubMed  Google Scholar 

  3. Brede M, Philipp M, Knaus A, Muthig V, Hein L (2004) Alpha2-adrenergic receptor subtypes - novel functions uncovered in gene-targeted mouse models. Biol Cell 96:343–348

    CAS  PubMed  Google Scholar 

  4. Belleville JP, Ward DS, Bloor BC, Maze M (1992) Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 77:1125–1133

    Article  CAS  PubMed  Google Scholar 

  5. Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, Young CC, Wright DR, Macleod DB, Somma J (2004) Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101:1066–1076

    Article  CAS  PubMed  Google Scholar 

  6. Bekker A, Sturaitis MK (2005) Dexmedetomidine for neurological surgery. Neurosurgery 57(1 Suppl):1–10, discussion 11–10

    Article  PubMed  Google Scholar 

  7. Bloor BC, Ward DS, Belleville JP, Maze M (1992) Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 77:1134–1142

    Article  CAS  PubMed  Google Scholar 

  8. Dyck JB, Maze M, Haack C, Vuorilehto L, Shafer SL (1993) The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology 78:813–820

    Article  CAS  PubMed  Google Scholar 

  9. Gertler R, Brown HC, Mitchell DH, Silvius EN (2001) Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent) 14:13–21

    CAS  Google Scholar 

  10. Anttila M, Penttila J, Helminen A, Vuorilehto L, Scheinin H (2003) Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol 56:691–693

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bhana N, Goa KL, McClellan KJ (2000) Dexmedetomidine. Drugs 59:263–268, discussion 269–270

    Article  CAS  PubMed  Google Scholar 

  12. Su F, Nicolson SC, Gastonguay MR, Barrett JS, Adamson PC, Kang DS, Godinez RI, Zuppa AF (2010) Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg 110:1383–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, Scheinin M, Schwilden H, Schüttler J, Olkkola KT (2012) Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth 108:460–468

    Article  CAS  PubMed  Google Scholar 

  14. Potts AL, Anderson BJ, Holford NH, Vu TC, Warman GR (2010) Dexmedetomidine hemodynamics in children after cardiac surgery. Paediatr Anaesth 20:425–433

    Article  PubMed  Google Scholar 

  15. Bol C, Danhof M, Stanski DR, Mandema JW (1997) Pharmacokinetic-pharmacodynamic characterization of the cardiovascular, hypnotic, EEG and ventilatory responses to dexmedetomidine in the rat. J Pharmacol Exp Ther 283:1051–1058

    CAS  Google Scholar 

  16. Eisenach JC, Shafer SL, Bucklin BA, Jackson C, Kallio A (1994) Pharmacokinetics and pharmacodynamics of intraspinal dexmedetomidine in sheep. Anesthesiology 80:1349–1359

    Article  CAS  PubMed  Google Scholar 

  17. Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, Scheinin M, Olkkola KT (2011) Bioavailability of dexmedetomidine after intranasal administration. Eur J Clin Pharmacol 67:825–831

    Article  CAS  PubMed  Google Scholar 

  18. Scheinin M, Karhuvaara S, Ojala-Karlsson P, Kallio A, Koulu M (1991) Plasma 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are insensitive indicators of alpha 2-adrenoceptor mediated regulation of norepinephrine release in healthy human volunteers. Life Sci 49:75–84

    Article  CAS  PubMed  Google Scholar 

  19. Sigl JC, Chamoun NG (1994) An introduction to bispectral analysis for the electroencephalogram. J Clin Monit 10:392–404

    Article  CAS  PubMed  Google Scholar 

  20. Bond AJ, Lader MH (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Article  Google Scholar 

  21. Linares OA, Jacquez JA, Zech LA, Smith MJ, Sanfield JA, Morrow LA, Rosen SG, Halter JB (1987) Norepinephrine metabolism in humans. Kinetic analysis and model. J Clin Invest 80:1332–1341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hilsted J, Christensen NJ, Madsbad S (1983) Whole body clearance of norepinephrine. The significance of arterial sampling and of surgical stress. J Clin Invest 71:500–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wohlfart B, Farazdaghi GR (2003) Reference values for the physical work capacity on a bicycle ergometer for men -- a comparison with a previous study on women. Clin Physiol Funct Imaging 23:166–170

    Article  PubMed  Google Scholar 

  24. American Heart Association (2012) Understanding Blood Pressure Readings.: American Heart Association; Accessed 4 April

  25. Fox SM 3rd, Naughton JP, Haskell WL (1971) Physical activity and the prevention of coronary heart disease. Ann Clin Res 3:404–432

    PubMed  Google Scholar 

  26. Miller WC, Wallace JP, Eggert KE (1993) Predicting max HR and the HR-VO2 relationship for exercise prescription in obesity. Med Sci Sports Exerc 25:1077–1081

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka H, Fukumoto S, Osaka Y, Ogawa S, Yamaguchi H, Miyamoto H (1991) Distinctive effects of three different modes of exercise on oxygen uptake, heart rate and blood lactate and pyruvate. Int J Sports Med 12:433–438

    Article  CAS  PubMed  Google Scholar 

  28. Robergs RA, Landwehr R (2002) The surprising history of the “HRmax = 220 - age” equation. J Exerc Physiol (Online) 5:1–10

    Google Scholar 

  29. Beal SL, Sheiner LB, Boeckmann AJ, and Bauer RJ (eds) NONMEM 7.3.0 Users Guides. (1989–2013). ICON Development Solutions, Hanover, MD

  30. Hooker AC, Staatz CE, Karlsson MO (2007) Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24:2187–2197

    Article  CAS  PubMed  Google Scholar 

  31. De Wolf AM, Fragen RJ, Avram MJ, Fitzgerald PC, Rahimi-Danesh F (2001) The pharmacokinetics of dexmedetomidine in volunteers with severe renal impairment. Anesth Analg 93:1205–1209

    Article  PubMed  Google Scholar 

  32. Dutta S, Lal R, Karol MD, Cohen T, Ebert T (2000) Influence of cardiac output on dexmedetomidine pharmacokinetics. J Pharm Sci 89:519–527

    Article  CAS  PubMed  Google Scholar 

  33. Langer SZ (1976) The role of alpha- and beta-presynaptic receptors in the regulation of noradrenaline release elicited by nerve stimulation. Clin Sci Mol Med Suppl 3:423s–426s

    CAS  PubMed  Google Scholar 

  34. Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, Lefkowitz RJ, Regan JW (1990) Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem 265:63–69

    CAS  PubMed  Google Scholar 

  35. Kallio A, Scheinin M, Koulu M, Ponkilainen R, Ruskoaho H, Viinamäki O, Scheinin H (1989) Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther 46:33–42

    Article  CAS  PubMed  Google Scholar 

  36. Dayneka N, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. van Zwieten PA, Chalmers JP (1994) Different types of centrally acting antihypertensives and their targets in the central nervous system. Cardiovasc Drugs Ther 8:787–799

    Article  PubMed  Google Scholar 

  38. Esler M, Jackman G, Bobik A, Leonard P, Kelleher D, Skews H, Jennings G, Korner P (1981) Norepinephrine kinetics in essential hypertension. Defective neuronal uptake of norepinephrine in some patients. Hypertension 3:149–156

    Article  CAS  PubMed  Google Scholar 

  39. Rowell LB, Brengelmann GL, Freund PR (1987) Unaltered norepinephrine-heart rate relationship in exercise with exogenous heat. J Appl Physiol 62:646–650

    CAS  PubMed  Google Scholar 

  40. Yuen VM, Hui TW, Irwin MG, Yao TJ, Wong GL, Yuen MK (2010) Optimal timing for the administration of intranasal dexmedetomidine for premedication in children. Anaesthesia 65:922–929

    Article  CAS  PubMed  Google Scholar 

  41. Jogani V, Jinturkar K, Vyas T, Misra A (2008) Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul 2:25–40

    Article  CAS  PubMed  Google Scholar 

  42. Wermeling DP, Record KA, Kelly TH, Archer SM, Clinch T, Rudy AC (2006) Pharmacokinetics and pharmacodynamics of a new intranasal midazolam formulation in healthy volunteers. Anesth Analg 103:344–349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH Grants 57980 and 24211.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Authors’ contributions

HY and WJJ performed PK/PD modeling and contributed to writing of the manuscript. TI, SV, TM, RA, MH, MS, and KTO performed the original clinical studies [17] and contributed to writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H., Iirola, T., Vilo, S. et al. Mechanism-based population pharmacokinetic and pharmacodynamic modeling of intravenous and intranasal dexmedetomidine in healthy subjects. Eur J Clin Pharmacol 71, 1197–1207 (2015). https://doi.org/10.1007/s00228-015-1913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1913-0

Keywords

Navigation