Skip to main content

Advertisement

Log in

Clinical pharmacology and pharmacogenetics of thiopurines

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

The thiopurine drugs—azathioprine (AZA), 6-mercaptopurine (6-MP), and thioguanine—are widely used to treat malignancies, rheumatic diseases, dermatologic conditions, inflammatory bowel disease, and solid organ transplant rejection. However, thiopurine drugs have a relatively narrow therapeutic index and are capable of causing life-threatening toxicity, most often myelosuppression. Thiopurine S-methyltransferase (TPMT; EC 2.1.1.67), an enzyme that catalyzes S-methylation of these drugs, exhibits a genetic polymorphism in 10% of Caucasians, with 1/300 individuals having complete deficiency. Patients with intermediate or deficient TPMT activity are at risk for excessive toxicity after receiving standard doses of thiopurine medications. This report reviews the recent advances in the knowledge of the mechanism of action as well as the molecular basis and interethnic variations of TPMT and inosine triphosphate pyrophosphatase (ITPase; EC 3.6.1.19), another enzyme implicated in thiopurine toxicity. In addition, an update on pharmacokinetics, metabolism, drug-drug interactions, safety, and tolerability of thiopurine drugs is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

6-GTP:

6-Guanosine triphosphate

6-MMP or 6-MeMP:

6-Methylmercaptopurine

6-MP:

6-Mercaptopurine, an immunomodulator

6-TG:

6-Thioguanine, the active AZA antimetabolite

6-TGN:

6-Thioguanine nucleotide

6-TU:

6-Thiouric acid

AZA:

Azathioprine, prodrug derivative of 6-MP

CBC:

Complete blood count

HPRT:

Hypoxanthine phosphoribosyl transferase, an enzyme

IBD:

Inflammatory bowel disease

IMPDH:

Inosine monophosphate dehydrogenase

ITPase:

Inosine triphosphate pyrophosphatase

MCV:

Mean corpuscular volume

RBC:

Red blood cell

TIMP:

Thioinosic monophosphate, active metabolite

TPMT:

Thiopurine methyltransferase

WBC:

White blood cell

References

  1. Gottlieb AJ, Weinberg V, Ellison RR, Henderson ES, Terebelo H, Rafla S, Cuttner J, Silver RT, Carey RW, Levy RN et al (1984) Efficacy of daunorubicin in the therapy of adult acute lymphocytic leukemia: a prospective randomized trial by cancer and leukemia group B. Blood 64(1):267–274

    PubMed  CAS  Google Scholar 

  2. Veerman AJ, Hahlen K, Kamps WA, Van Leeuwen EF, De Vaan GA, Solbu G, Suciu S, Van Wering ER, Van der Does-Van der Berg A (1996) High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia. Results of protocol ALL VI from the Dutch Childhood Leukemia Study Group. J Clin Oncol 14(3):911–918

    PubMed  CAS  Google Scholar 

  3. Lennon Y (1989) Adult acute leukemia. In: DiPiro JT, Talber RL, Hayes PE (eds) Pharmacotherapy: a pathophysiologic approach. Elsevier, New York

  4. Anonymous (1993) Drugs of choice for cancer chemotherapy. Med Lett Drugs Ther 35(897):43–50

    Google Scholar 

  5. Holleb A, Fink D, Murphy G (1991) Clinical oncology. The American Cancer Scoiety, Atlanta, GA

    Google Scholar 

  6. Paton CM, Ekert H, Waters KD, Matthews RN, Toogood IR (1982) Treatment of acute myeloid leukaemia in children. Aust N Z J Med 12(2):143–146

    PubMed  CAS  Google Scholar 

  7. Skeel R (1991) Handbook of cancer chemotherapy. Little, Brown and Company, Boston

    Google Scholar 

  8. Wollner N, Burchenal JH, Lieberman PH, Exelby P, D’Angio G, Murphy ML (1976) Non-Hodgkin’s lymphoma in children. A comparative study of two modalities of therapy. Cancer 37(1):123–134

    PubMed  CAS  Google Scholar 

  9. Wollner N, Exelby PR, Lieberman PH (1979) Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer 44(6):1990–1999

    PubMed  CAS  Google Scholar 

  10. Pearson DC, May GR, Fick GH, Sutherland LR (1995) Azathioprine and 6-mercaptopurine in Crohn disease. A meta-analysis. Ann Intern Med 123(2):132–142

    PubMed  CAS  Google Scholar 

  11. Bean RH (1962) The treatment of chronic ulcerative colitis with 6-mercaptopurine. Med J Aust 49(2):592–593

    PubMed  Google Scholar 

  12. Kirk AP, Lennard-Jones JE (1982) Controlled trial of azathioprine in chronic ulcerative colitis. Br Med J (Clin Res Ed) 284(6325):1291–1292

    Article  CAS  Google Scholar 

  13. Mahadevan U, Tremaine WJ, Johnson T, Pike MG, Mays DC, Lipsky JJ, Sandborn WJ (2000) Intravenous azathioprine in severe ulcerative colitis: a pilot study. Am J Gastroenterol 95(12):3463–3468

    PubMed  CAS  Google Scholar 

  14. Ponticelli C, Tarantino A, Vegeto A (1999) Renal transplantation, past, present and future. J Nephrol 12(Suppl 2):S105–110

    PubMed  Google Scholar 

  15. Pratt DS, Flavin DP, Kaplan MM (1996) The successful treatment of autoimmune hepatitis with 6-mercaptopurine after failure with azathioprine. Gastroenterology 110(1):271–274

    PubMed  CAS  Google Scholar 

  16. Heurkens AH, Westedt ML, Breedveld FC (1991) Prednisone plus azathioprine treatment in patients with rheumatoid arthritis complicated by vasculitis. Arch Intern Med 151(11):2249–2254

    PubMed  CAS  Google Scholar 

  17. Abu-Shakra M, Shoenfeld Y (2001) Azathioprine therapy for patients with systemic lupus erythematosus. Lupus 10(3):152–153

    PubMed  CAS  Google Scholar 

  18. Silvis NG, Levine N (1999) Pulse dosing of thioguanine in recalcitrant psoriasis. Arch Dermatol 135(4):433–437

    PubMed  CAS  Google Scholar 

  19. Murphy LA, Atherton DJ (2003) Azathioprine as a treatment for severe atopic eczema in children with a partial thiopurine methyl transferase (TPMT) deficiency. Pediatr Dermatol 20(6):531–534

    PubMed  Google Scholar 

  20. Teml A, Schaeffeler E, Herrlinger KR, Klotz U, Schwab M (2007) Thiopurine treatment in inflammatory bowel disease: clinical pharmacology and implication of pharmacogenetically guided dosing. Clin Pharmacokinet 46(3):187–208

    PubMed  CAS  Google Scholar 

  21. Present DH, Korelitz BI, Wisch N, Glass JL, Sachar DB, Pasternack BS (1980) Treatment of Crohn’s disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N Engl J Med 302(18):981–987

    PubMed  CAS  Google Scholar 

  22. Derijks LJ, Gilissen LP, Hooymans PM, Hommes DW (2006) Review article: thiopurines in inflammatory bowel disease. Aliment Pharmacol Ther 24(5):715–729

    PubMed  CAS  Google Scholar 

  23. Hanauer SB, Sandborn W (2001) Management of Crohn’s disease in adults. Am J Gastroenterol 96(3):635–643

    PubMed  CAS  Google Scholar 

  24. Kornbluth A, Sachar DB (1997) Ulcerative colitis practice guidelines in adults. American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 92(2):204–211

    PubMed  CAS  Google Scholar 

  25. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43(4):329–339

    PubMed  CAS  Google Scholar 

  26. Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, Mace R (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273(5278):1109–1111

    PubMed  CAS  Google Scholar 

  27. Inamochi H, Higashigawa M, Shimono Y, Nagata T, Cao DC, Mao XY, M’Soka T, Hori H, Kawasaki H, Sakurai M (1999) Delayed cytotoxicity of 6-mercaptopurine is compatible with mitotic death caused by DNA damage due to incorporation of 6-thioguanine into DNA as 6-thioguanine nucleotide. J Exp Clin Cancer Res 18(3):417–424

    PubMed  CAS  Google Scholar 

  28. Elion GB, Callahan S, Rundles RW, Hitchings GH (1963) Relationship between metabolic fates and antitumor activities of thiopurines. Cancer Res 23:1207–1217

    PubMed  CAS  Google Scholar 

  29. Hamilton L, Elion GB (1954) The fate of 6-mercaptopurine in man. Ann N Y Acad Sci 60(2):304–314

    Article  PubMed  CAS  Google Scholar 

  30. Allan PW, Bennett LL Jr (1971) 6-Methylthioguanylic acid, a metabolite of 6-thioguanine. Biochem Pharmacol 20(4):847–852

    PubMed  CAS  Google Scholar 

  31. Tay BS, Lilley RM, Murray AW, Atkinson MR (1969) Inhibition of phosphoribosyl pyrophosphate amidotransferase from Ehrlich ascites-tumour cells by thiopurine nucleotides. Biochem Pharmacol 18(4):936–938

    PubMed  CAS  Google Scholar 

  32. Elion GB (1989) The purine path to chemotherapy. Science 244(4900):41–47

    PubMed  CAS  Google Scholar 

  33. Erb N, Harms DO, Janka-Schaub G (1998) Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer Chemother Pharmacol 42(4):266–272

    PubMed  CAS  Google Scholar 

  34. Thomas CW, Myhre GM, Tschumper R, Sreekumar R, Jelinek D, McKean DJ, Lipsky JJ, Sandborn WJ, Egan LJ (2005) Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther 312(2):537–545

    PubMed  CAS  Google Scholar 

  35. Boirivant M, Marini M, Di Felice G, Pronio AM, Montesani C, Tersigni R, Strober W (1999) Lamina propria T cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 116(3):557–565

    PubMed  CAS  Google Scholar 

  36. Breese E, Braegger CP, Corrigan CJ, Walker-Smith JA, MacDonald TT (1993) Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology 78(1):127–131

    PubMed  CAS  Google Scholar 

  37. Plevy SE, Landers CJ, Prehn J, Carramanzana NM, Deem RL, Shealy D, Targan SR (1997) A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 159(12):6276–6282

    PubMed  CAS  Google Scholar 

  38. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr HA, Wirtz S, Becker C, Atreya R, Mudter J, Hildner K, Bartsch B, Holtmann M, Blumberg R, Walczak H, Iven H, Galle PR, Ahmadian MR, Neurath MF (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111(8):1133–1145

    PubMed  CAS  Google Scholar 

  39. Chabner BA, Ryan DP, Paz-Ares L, Garcia-Carbonero R, Calabresi P (2001) Antineoplastic agents. In: Hardman JG, Limbird LE, Goodman Gillman A (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th ed. McGraw-Hill, New York

  40. Sandborn WJ, Tremaine WJ, Wolf DC, Targan SR, Sninsky CA, Sutherland LR, Hanauer SB, McDonald JW, Feagan BG, Fedorak RN, Isaacs KL, Pike MG, Mays DC, Lipsky JJ, Gordon S, Kleoudis CS, Murdock RH Jr (1999) Lack of effect of intravenous administration on time to respond to azathioprine for steroid-treated Crohn’s disease. North American Azathioprine Study Group. Gastroenterology 117(3):527–535

    PubMed  CAS  Google Scholar 

  41. Elion GB (1969) Actions of purine analogs: enzyme specificity studies as a basis for interpretation and design. Cancer Res 29(12):2448–2453

    PubMed  CAS  Google Scholar 

  42. Elion GB (1967) Symposium on immunosuppressive drugs. Biochemistry and pharmacology of purine analogues. Fed Proc 26(3):898–904

    PubMed  CAS  Google Scholar 

  43. Weinshilboum RM, Raymond FA, Pazmino PA (1978) Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clin Chim Acta 85(3):323–333

    PubMed  CAS  Google Scholar 

  44. Berns A, Rubenfeld S, Rymzo WT Jr, Calabro JJ (1972) Hazard of combining allopurinol and thiopurine. N Engl J Med 286(13):730–731

    PubMed  CAS  Google Scholar 

  45. Zimm S, Collins JM, O’Neill D, Chabner BA, Poplack DG (1983) Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clin Pharmacol Ther 34(6):810–817

    PubMed  CAS  Google Scholar 

  46. Zimm S, Grygiel JJ, Strong JM, Monks TJ, Poplack DG (1984) Identification of 6-mercaptopurine riboside in patients receiving 6-mercaptopurine as a prolonged intravenous infusion. Biochem Pharmacol 33(24):4089–4092

    PubMed  CAS  Google Scholar 

  47. Krenitsky TA, Neil SM, Elion GB, Hitchings GH (1972) A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150(2):585–599

    PubMed  CAS  Google Scholar 

  48. Kitchen BJ, Balis FM, Poplack DG, O’Brien M, Craig CE, Adamson PC (1997) A pediatric phase I trial and pharmacokinetic study of thioguanine administered by continuous i.v. infusion. Clin Cancer Res 3(5):713–717

    PubMed  CAS  Google Scholar 

  49. Konits PH, Egorin MJ, Van Echo DA, Aisner J, Andrews PA, May ME, Bachur NR, Wiernik PH (1982) Phase II evaluation and plasma pharmacokinetics of high-dose intravenous 6-thioguanine in patients with colorectal carcinoma. Cancer Chemother Pharmacol 8(2):199–203

    PubMed  CAS  Google Scholar 

  50. Bronk JR, Lister N, Shaw MI (1988) Transport and metabolism of 6-thioguanine and 6-mercaptopurine in mouse small intestine. Clin Sci (Lond) 74(6):629–638

    CAS  Google Scholar 

  51. Kitchen BJ, Moser A, Lowe E, Balis FM, Widemann B, Anderson L, Strong J, Blaney SM, Berg SL, O’Brien M, Adamson PC (1999) Thioguanine administered as a continuous intravenous infusion to pediatric patients is metabolized to the novel metabolite 8-hydroxy-thioguanine. J Pharmacol Exp Ther 291(2):870–874

    PubMed  CAS  Google Scholar 

  52. Chan GL, Erdmann GR, Gruber SA, Matas AJ, Canafax DM (1990) Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol 30(4):358–363

    PubMed  CAS  Google Scholar 

  53. Arnott ID, Watts D, Satsangi J (2003) Azathioprine and anti-TNF alpha therapies in Crohn’s disease: a review of pharmacology, clinical efficacy and safety. Pharmacol Res 47(1):1–10

    PubMed  CAS  Google Scholar 

  54. Lancaster DL, Patel N, Lennard L, Lilleyman JS (2001) 6-Thioguanine in children with acute lymphoblastic leukaemia: influence of food on parent drug pharmacokinetics and 6-thioguanine nucleotide concentrations. Br J Clin Pharmacol 51(6):531–539

    PubMed  CAS  Google Scholar 

  55. Bell BA, Brockway GN, Shuster JJ, Erdmann G, Sterikoff S, Bostrom B, Camitta BM (2004) A comparison of red blood cell thiopurine metabolites in children with acute lymphoblastic leukemia who received oral mercaptopurine twice daily or once daily: a Pediatric Oncology Group study (now The Children’s Oncology Group). Pediatr Blood Cancer 43(2):105–109

    PubMed  CAS  Google Scholar 

  56. Lindqvist M, Hindorf U, Almer S, Soderkvist P, Strom M, Hjortswang H, Peterson C (2006) No induction of thiopurine methyltransferase during thiopurine treatment in inflammatory bowel disease. Nucleosides Nucleotides Nucleic Acids 25(9–11):1033–1037

    PubMed  CAS  Google Scholar 

  57. Mori S, Ohtsuki S, Takanaga H, Kikkawa T, Kang YS, Terasaki T (2004) Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem 90(4):931–941

    PubMed  CAS  Google Scholar 

  58. Gardiner SJ, Gearry RB, Roberts RL, Zhang M, Barclay ML, Begg EJ (2006) Exposure to thiopurine drugs through breast milk is low based on metabolite concentrations in mother-infant pairs. Br J Clin Pharmacol 62(4):453–456

    PubMed  CAS  Google Scholar 

  59. Moretti ME, Verjee Z, Ito S, Koren G (2006) Breast-feeding during maternal use of azathioprine. Ann Pharmacother 40(12):2269–2272

    PubMed  CAS  Google Scholar 

  60. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM (1991) Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 119(6):985–989

    PubMed  CAS  Google Scholar 

  61. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336(8709):225–229

    PubMed  CAS  Google Scholar 

  62. McLeod HL, Miller DR, Evans WE (1993) Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341(8853):1151

    PubMed  CAS  Google Scholar 

  63. Chocair PR, Duley JA, Simmonds HA, Cameron JS (1992) The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 53(5):1051–1056

    PubMed  CAS  Google Scholar 

  64. Soria-Royer C, Legendre C, Mircheva J, Premel S, Beaune P, Kreis H (1993) Thiopurine-methyl-transferase activity to assess azathioprine myelotoxicity in renal transplant recipients. Lancet 341(8860):1593–1594

    PubMed  CAS  Google Scholar 

  65. Lennard L, Lilleyman JS (1989) Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 7(12):1816–1823

    PubMed  CAS  Google Scholar 

  66. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Theoret Y, Seidman EG (2000) Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118(4):705–713

    PubMed  CAS  Google Scholar 

  67. Weinshilboum RM, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32(5):651–662

    PubMed  CAS  Google Scholar 

  68. Krynetski EY, Tai HL, Yates CR, Fessing MY, Loennechen T, Schuetz JD, Relling MV, Evans WE (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6(4):279–290

    PubMed  CAS  Google Scholar 

  69. McLeod HL, Krynetski EY, Relling MV, Evans WE (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14(4):567–572

    PubMed  CAS  Google Scholar 

  70. McLeod HL, Lin JS, Scott EP, Pui CH, Evans WE (1994) Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 55(1):15–20

    PubMed  CAS  Google Scholar 

  71. Thervet E, Anglicheau D, Toledano N, Houllier AM, Noel LH, Kreis H, Beaune P, Legendre C (2001) Long-term results of TMPT activity monitoring in azathioprine-treated renal allograft recipients. J Am Soc Nephrol 12(1):170–176

    PubMed  CAS  Google Scholar 

  72. Mahadevan U, Sandborn W (2004) Clinical pharmacology of inflammatory bowel disease. In: Sartor RB, Sandborn WJ (eds) Kirsner’s inflammatory bowel diseases, 6th ed. Saunders, Philadelphia

  73. Weinshilboum R (2001) Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos 29(4 Pt 2):601–605

    PubMed  CAS  Google Scholar 

  74. Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 39:19–52

    PubMed  CAS  Google Scholar 

  75. Woodson LC, Ames MM, Selassie CD, Hansch C, Weinshilboum RM (1983) Thiopurine methyltransferase. Aromatic thiol substrates and inhibition by benzoic acid derivatives. Mol Pharmacol 24(3):471–478

    PubMed  CAS  Google Scholar 

  76. Woodson LC, Weinshilboum RM (1983) Human kidney thiopurine methyltransferase. Purification and biochemical properties. Biochem Pharmacol 32(5):819–826

    PubMed  CAS  Google Scholar 

  77. Krynetski EY, Evans WE (1999) Pharmacogenetics as a molecular basis for individualized drug therapy: the thiopurine S-methyltransferase paradigm. Pharm Res 16(3):342–349

    PubMed  CAS  Google Scholar 

  78. Otterness D, Szumlanski C, Lennard L, Klemetsdal B, Aarbakke J, Park-Hah JO, Iven H, Schmiegelow K, Branum E, O’Brien J, Weinshilboum R (1997) Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther 62(1):60–73

    PubMed  CAS  Google Scholar 

  79. Otterness DM, Szumlanski CL, Wood TC, Weinshilboum RM (1998) Human thiopurine methyltransferase pharmacogenetics. Kindred with a terminal exon splice junction mutation that results in loss of activity. J Clin Invest 101(5):1036–1044

    PubMed  CAS  Google Scholar 

  80. Spire-Vayron de la Moureyre C, Debuysere H, Sabbagh N, Marez D, Vinner E, Chevalier ED, Lo Guidice JM, Broly F (1998) Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Hum Mutat 12(3):177–185

    PubMed  CAS  Google Scholar 

  81. Tai HL, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE (1997) Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci USA 94(12):6444–6449

    PubMed  CAS  Google Scholar 

  82. Tai HL, Krynetski EY, Yates CR, Loennechen T, Fessing MY, Krynetskaia NF, Evans WE (1996) Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 58(4):694–702

    PubMed  CAS  Google Scholar 

  83. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH, Relling MV, Evans WE (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126(8):608–614

    PubMed  CAS  Google Scholar 

  84. Krynetski EY, Schuetz JD, Galpin AJ, Pui CH, Relling MV, Evans WE (1995) A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci USA 92(4):949–953

    PubMed  CAS  Google Scholar 

  85. Collie-Duguid ES, Pritchard SC, Powrie RH, Sludden J, Collier DA, Li T, McLeod HL (1999) The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9(1):37–42

    PubMed  CAS  Google Scholar 

  86. McLeod HL, Pritchard SC, Githang’a J, Indalo A, Ameyaw MM, Powrie RH, Booth L, Collie-Duguid ES (1999) Ethnic differences in thiopurine methyltransferase pharmacogenetics: evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics 9(6):773–776

    PubMed  CAS  Google Scholar 

  87. Tai HL, Fessing MY, Bonten EJ, Yanishevsky Y, d’Azzo A, Krynetski EY, Evans WE (1999) Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. Pharmacogenetics 9(5):641–650

    PubMed  CAS  Google Scholar 

  88. Loennechen T, Yates CR, Fessing MY, Relling MV, Krynetski EY, Evans WE (1998) Isolation of a human thiopurine S-methyltransferase (TPMT) complementary DNA with a single nucleotide transition A719G (TPMT*3C) and its association with loss of TPMT protein and catalytic activity in humans. Clin Pharmacol Ther 64(1):46–51

    PubMed  CAS  Google Scholar 

  89. Hon YY, Fessing MY, Pui CH, Relling MV, Krynetski EY, Evans WE (1999) Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet 8(2):371–376

    PubMed  CAS  Google Scholar 

  90. Hamdan-Khalil R, Allorge D, Lo-Guidice JM, Cauffiez C, Chevalier D, Spire C, Houdret N, Libersa C, Lhermitte M, Colombel JF, Gala JL, Broly F (2003) In vitro characterization of four novel non-functional variants of the thiopurine S-methyltransferase. Biochem Biophys Res Commun 309(4):1005–1010

    PubMed  CAS  Google Scholar 

  91. Lindqvist M, Haglund S, Almer S, Peterson C, Taipalensu J, Hertervig E, Lyrenas E, Soderkvist P (2004) Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics 14(4):261–265

    PubMed  CAS  Google Scholar 

  92. Alves S, Amorim A, Ferreira F, Prata MJ (2001) Influence of the variable number of tandem repeats located in the promoter region of the thiopurine methyltransferase gene on enzymatic activity. Clin Pharmacol Ther 70(2):165–174

    PubMed  CAS  Google Scholar 

  93. Alves S, Ferreira F, Prata MJ, Amorim A (2000) Characterization of three new VNTR alleles in the promoter region of the TPMT gene. Hum Mutat 15(1):121

    PubMed  CAS  Google Scholar 

  94. Spire-Vayron de la Moureyre C, Debuysere H, Fazio F, Sergent E, Bernard C, Sabbagh N, Marez D, Lo Guidice JM, D’Halluin JC, Broly F (1999) Characterization of a variable number tandem repeat region in the thiopurine S-methyltransferase gene promoter. Pharmacogenetics 9(2):189–198

    PubMed  CAS  Google Scholar 

  95. Yan L, Zhang S, Eiff B, Szumlanski CL, Powers M, O’Brien JF, Weinshilboum RM (2000) Thiopurine methyltransferase polymorphic tandem repeat: genotype-phenotype correlation analysis. Clin Pharmacol Ther 68(2):210–219

    PubMed  CAS  Google Scholar 

  96. Marinaki AM, Arenas M, Khan ZH, Lewis CM, Shobowale-Bakre el M, Escuredo E, Fairbanks LD, Mayberry JF, Wicks AC, Ansari A, Sanderson J, Duley JA (2003) Genetic determinants of the thiopurine methyltransferase intermediate activity phenotype in British Asians and Caucasians. Pharmacogenetics 13(2):97–105

    PubMed  CAS  Google Scholar 

  97. Gate Pharmaceuticals (2007) Purinethol (mercaptopurine) prescribing information. http://www.gatepharma.com/Purinethol/PI.pdf. Accessed 8 March 2008

  98. Ameyaw MM, Collie-Duguid ES, Powrie RH, Ofori-Adjei D, McLeod HL (1999) Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet 8(2):367–370

    Google Scholar 

  99. Ganiere-Monteil C, Medard Y, Lejus C, Bruneau B, Pineau A, Fenneteau O, Bourin M, Jacqz-Aigrain E (2004) Phenotype and genotype for thiopurine methyltransferase activity in the French Caucasian population: impact of age. Eur J Clin Pharmacol 60(2):89–96

    Google Scholar 

  100. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, Zanger UM, Schwab M (2004) Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14(7):407–417

    Google Scholar 

  101. Kurzawski M, Gawronska-Szklarz B, Drozdzik M (2004) Frequency distribution of thiopurine S-methyltransferase alleles in a polish population. Ther Drug Monit 26(5):541–545

    Google Scholar 

  102. Haglund S, Lindqvist M, Almer S, Peterson C, Taipalensuu J (2004) Pyrosequencing of TPMT alleles in a general Swedish population and in patients with inflammatory bowel disease. Clin Chem 50(2):288–295

    Google Scholar 

  103. Loennechen T, Utsi E, Hartz I, Lysaa R, Kildalsen H, Aarbakke J (2001) Detection of one single mutation predicts thiopurine S-methyltransferase activity in a population of Saami in northern Norway. Clin Pharmacol Ther 70(2):183–188

    Google Scholar 

  104. Indjova D, Atanasova S, Shipkova M, Armstrong VW, Oellerich M, Svinarov D (2003) Phenotypic and genotypic analysis of thiopurine s-methyltransferase polymorphism in the bulgarian population. Ther Drug Monit 25(5):631–636

    PubMed  Google Scholar 

  105. Larovere LE, de Kremer RD, Lambooy LH, De Abreu RA (2003) Genetic polymorphism of thiopurine S-methyltransferase in Argentina. Ann Clin Biochem 40(Pt 4):388–393

    PubMed  CAS  Google Scholar 

  106. Zhang JP, Guan YY, Xu AL, Zhou SF, Wu JH, Wei H, Huang M (2004) Gene mutation of thiopurine S-methyltransferase in Uygur Chinese. Eur J Clin Pharmacol 60 (1): 1-3

    Google Scholar 

  107. Kumagai K, Hiyama K, Ishioka S, Sato H, Yamanishi Y, McLeod HL, Konishi F, Maeda H, Yamakido M (2001) Allelotype frequency of the thiopurine methyltransferase (TPMT) gene in Japanese. Pharmacogenetics 11(3):275–278

    Google Scholar 

  108. Srimartpirom S, Tassaneeyakul W, Kukongviriyapan V, Tassaneeyakul W (2004) Thiopurine S-methyltransferase genetic polymorphism in the Thai population. Br J Clin Pharmacol 58(1):66-70

    Google Scholar 

  109. Chang JG, Lee LS, Chen CM, Shih MC, Wu MC, Tsai FJ, Liang DC (2002) Molecular analysis of thiopurine S-methyltransferase alleles in South-east Asian populations. Pharmacogenetics 12(3):191–195

    PubMed  CAS  Google Scholar 

  110. Boson WL, Romano-Silva MA, Correa H, Falcao RP, Teixeira-Vidigal PV, De Marco L (2003) Thiopurine methyltransferase polymorphisms in a Brazilian population. Pharmacogenomics J 3(3):178–182

    Google Scholar 

  111. Zhang JP, Guan YY, Wu JH, Xu AL, Zhou S, Huang M (2004) Phenotyping and genotyping study of thiopurine S-methyltransferase in healthy Chinese children: a comparison of Han and Yao ethnic groups. Br J Clin Pharmacol 58(2):163–168

    Google Scholar 

  112. Isaza C, Henao J, Lopez AM, Cacabelos R (2003) Allelic variants of the thiopurine methyltransferase (TPMT) gene in the Colombian population. Methods Find Exp Clin Pharmacol 25(6):423–429

    Google Scholar 

  113. Hamdy SI, Hiratsuka M, Narahara K, Endo N, El-Enany M, Moursi N, Ahmed MS, Mizugaki M (2003) Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. Br J Clin Pharmacol 55(6):560–569

    Google Scholar 

  114. Rossi AM, Bianchi M, Guarnieri C, Barale R, Pacifici GM (2001) Genotype-phenotype correlation for thiopurine S-methyltransferase in healthy Italian subjects. Eur J Clin Pharmacol 57(1):51–54

    PubMed  CAS  Google Scholar 

  115. McLeod HL, Siva C (2002) The thiopurine S-methyltransferase gene locus – implications for clinical pharmacogenomics. Pharmacogenomics 3(1):89–98

    PubMed  CAS  Google Scholar 

  116. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–2008

    PubMed  CAS  Google Scholar 

  117. Kham SK, Tan PL, Tay AH, Heng CK, Yeoh AE, Quah TC (2002) Thiopurine methyltransferase polymorphisms in a multiracial Asian population and children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 24(5):353–359

    PubMed  CAS  Google Scholar 

  118. Klemetsdal B, Tollefsen E, Loennechen T, Johnsen K, Utsi E, Gisholt K, Wist E, Aarbakke J (1992) Interethnic difference in thiopurine methyltransferase activity. Clin Pharmacol Ther 51(1):24–31

    PubMed  CAS  Google Scholar 

  119. Evans WE (2004) Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 26(2):186–191

    PubMed  CAS  Google Scholar 

  120. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R, Kalwinsky D, Keller F, Khatib Z, Margolin J, Murray J, Quinn J, Ravindranath Y, Ritchey K, Roberts W, Rogers ZR, Schiff D, Steuber C, Tucci F, Kornegay N, Krynetski EY, Relling MV (2001) Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 19(8):2293–2301

    PubMed  CAS  Google Scholar 

  121. Langley PG, Underhill J, Tredger JM, Norris S, McFarlane IG (2002) Thiopurine methyltransferase phenotype and genotype in relation to azathioprine therapy in autoimmune hepatitis. J Hepatol 37(4):441–447

    PubMed  CAS  Google Scholar 

  122. Marinaki AM, Sumi S, Arenas M, Fairbanks L, Harihara S, Shimizu K, Ueta A, Duley JA (2004) Allele frequency of inosine triphosphate pyrophosphatase gene polymorphisms in a Japanese population. Nucleosides Nucleotides Nucleic Acids 23(8–9):1399–1401

    PubMed  CAS  Google Scholar 

  123. Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM, Shobowale-Bakre el M, Escuredo E, Fairbanks LD, Sanderson JD (2004) Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 14(3):181–187

    PubMed  CAS  Google Scholar 

  124. Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre M, Rees DC, Thein SL, Ansari A, Sanderson J, De Abreu RA, Simmonds HA, Duley JA (2002) Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet 111(4–5):360–367

    PubMed  CAS  Google Scholar 

  125. Gearry RB, Roberts RL, Barclay ML, Kennedy MA (2004) Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics 14(11):779–781

    PubMed  CAS  Google Scholar 

  126. Marsh S, King CR, Ahluwalia R, McLeod HL (2004) Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet 49(10):579–581

    PubMed  CAS  Google Scholar 

  127. Szumlanski CL, Weinshilboum RM (1995) Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol 39(4):456–459

    PubMed  CAS  Google Scholar 

  128. Lewis LD, Benin A, Szumlanski CL, Otterness DM, Lennard L, Weinshilboum RM, Nierenberg DW (1997) Olsalazine and 6-mercaptopurine-related bone marrow suppression: a possible drug-drug interaction. Clin Pharmacol Ther 62(4):464–475

    PubMed  CAS  Google Scholar 

  129. Lowry PW, Franklin CL, Weaver AL, Szumlanski CL, Mays DC, Loftus EV, Tremaine WJ, Lipsky JJ, Weinshilboum RM, Sandborn WJ (2001) Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut 49(5):656–664

    PubMed  CAS  Google Scholar 

  130. Gilissen LP, Bierau J, Derijks LJ, Bos LP, Hooymans PM, van Gennip A, Stockbrugger RW, Engels LG (2005) The pharmacokinetic effect of discontinuation of mesalazine on mercaptopurine metabolite levels in inflammatory bowel disease patients. Aliment Pharmacol Ther 22(7):605–611

    PubMed  CAS  Google Scholar 

  131. Roblin X, Serre-Debeauvais F, Phelip JM, Bessard G, Bonaz B (2003) Drug interaction between infliximab and azathioprine in patients with Crohn’s disease. Aliment Pharmacol Ther 18(9):917–925

    PubMed  CAS  Google Scholar 

  132. Martin LA, Mehta SD (2003) Diminished anticoagulant effects of warfarin with concomitant mercaptopurine therapy. Pharmacotherapy 23(2):260–264

    PubMed  CAS  Google Scholar 

  133. Singleton JD, Conyers L (1992) Warfarin and azathioprine: an important drug interaction. Am J Med 92(2):217

    PubMed  CAS  Google Scholar 

  134. Shepherd PC, Fooks J, Gray R, Allan NC (1991) Thioguanine used in maintenance therapy of chronic myeloid leukaemia causes non-cirrhotic portal hypertension. Results from MRC CML. II. Trial comparing busulphan with busulphan and thioguanine. Br J Haematol 79(2):185–192

    PubMed  CAS  Google Scholar 

  135. Rosenbaum EH, Cohen RA, Glatstein HR (1966) Vaccination of a patient receiving immunosuppressive therapy for lymphosarcoma. JAMA 198(7):737–740

    PubMed  CAS  Google Scholar 

  136. Gossmann J, Kachel HG, Schoeppe W, Scheuermann EH (1993) Anemia in renal transplant recipients caused by concomitant therapy with azathioprine and angiotensin-converting enzyme inhibitors. Transplantation 56(3):585–589

    PubMed  CAS  Google Scholar 

  137. Gossmann J, Thurmann P, Bachmann T, Weller S, Kachel HG, Schoeppe W, Scheuermann EH (1996) Mechanism of angiotensin converting enzyme inhibitor-related anemia in renal transplant recipients. Kidney Int 50(3):973–978

    PubMed  CAS  Google Scholar 

  138. Lysaa RA, Giverhaug T, Wold HL, Aarbakke J (1996) Inhibition of human thiopurine methyltransferase by furosemide, bendroflumethiazide and trichlormethiazide. Eur J Clin Pharmacol 49(5):393–396

    PubMed  CAS  Google Scholar 

  139. Xin HW, Fischer C, Schwab M, Klotz U (2005) Thiopurine S-methyltransferase as a target for drug interactions. Eur J Clin Pharmacol 61(5–6):395–398

    PubMed  CAS  Google Scholar 

  140. Present DH, Meltzer SJ, Krumholz MP, Wolke A, Korelitz BI (1989) 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 111(8):641–649

    PubMed  CAS  Google Scholar 

  141. Sandborn W, Sutherland L, Pearson D, May G, Modigliani R, Prantera C (2004) Azathioprine or 6-mercaptopurine for induction of remission in Crohn’s disease.Cochrane Database Syst Rev. DOI 10.1002/14651858.CD000545

  142. Connell WR, Kamm MA, Ritchie JK, Lennard-Jones JE (1993) Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 34(8):1081–1085

    PubMed  CAS  Google Scholar 

  143. Colonna T, Korelitz BI (1994) The role of leukopenia in the 6-mercaptopurine-induced remission of refractory Crohn’s disease. Am J Gastroenterol 89(3):362–366

    PubMed  CAS  Google Scholar 

  144. Kirschner BS (1998) Safety of azathioprine and 6-mercaptopurine in pediatric patients with inflammatory bowel disease. Gastroenterology 115(4):813–821

    PubMed  CAS  Google Scholar 

  145. Dubinsky MC, Yang H, Hassard PV, Seidman EG, Kam LY, Abreu MT, Targan SR, Vasiliauskas EA (2002) 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122(4):904–915

    PubMed  CAS  Google Scholar 

  146. Dubinsky MC (2003) Optimizing immunomodulator therapy for inflammatory bowel disease. Curr Gastroenterol Rep 5(6):506–511

    PubMed  Google Scholar 

  147. Herrlinger KR, Schwab M, Fellermann K, Stange EF (2004) 6-thioguanine—buried alive? Gastroenterology 126(3):940–941, author reply 941–942

    PubMed  Google Scholar 

  148. Sanderson J, Ansari A, Marinaki T, Duley J (2004) Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann Clin Biochem 41(Pt 4):294–302

    PubMed  CAS  Google Scholar 

  149. Lewis JD, Bilker WB, Brensinger C, Deren JJ, Vaughn DJ, Strom BL (2001) Inflammatory bowel disease is not associated with an increased risk of lymphoma. Gastroenterology 121(5):1080–1087

    PubMed  CAS  Google Scholar 

  150. Loftus EV Jr, Tremaine WJ, Habermann TM, Harmsen WS, Zinsmeister AR, Sandborn WJ (2000) Risk of lymphoma in inflammatory bowel disease. Am J Gastroenterol 95(9):2308–2312

    PubMed  Google Scholar 

  151. Dayharsh GA, Loftus EV Jr, Sandborn WJ, Tremaine WJ, Zinsmeister AR, Witzig TE, Macon WR, Burgart LJ (2002) Epstein-Barr virus-positive lymphoma in patients with inflammatory bowel disease treated with azathioprine or 6-mercaptopurine. Gastroenterology 122(1):72–77

    PubMed  CAS  Google Scholar 

  152. Stork LC, Erdmaru G, Adamson P, Bostrom B, Matloub YH, Holcenberg I, Blake M, Kelleher JF, Masterson M, Ettinger RS, Sacher HN, Gaynon PS (1998) Oral 6-thioguanine (TG) causes relatively mild and reversible hepatic venoocclusive disease (VOD). J Pediatr Hematol/Oncol 20(4):400

    Google Scholar 

  153. Jacobs SS, Stork LC, Bostrom BC, Hutchinson R, Holcenberg J, Reaman GH, Erdmann G, Franklin J, Neglia JP, Steinberg SM, Balis FM, Adamson PC (2006) Substitution of oral and intravenous thioguanine for mercaptopurine in a treatment regimen for children with standard risk acute lymphoblastic leukemia: a collaborative children’s oncology group/national cancer institute pilot trial (CCG-1942). Pediatr Blood Cancer 49(3):250–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahasranaman, S., Howard, D. & Roy, S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64, 753–767 (2008). https://doi.org/10.1007/s00228-008-0478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0478-6

Keywords

Navigation