Skip to main content
Log in

The color of the trophosome: elemental sulfur distribution in the endosymbionts of Riftia pachyptila (Vestimentifera; Siboglinidae)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Riftia pachyptila Jones, 1981, lives in association with a chemoautotrophic, sulfide-oxidizing γ-Proteobacterium that occurs in a specialized organ, the trophosome. Ultrastructurally different bacterial subpopulations occur in different regions of the trophosome lobules (central rods, median small cocci, peripheral large cocci) and contain vesicles, which have been proposed to be sites of elemental sulfur storage. Differently colored trophosomes have been suggested to reflect different amounts of elemental sulfur in the tissue. In this study, the presence of elemental sulfur (S0) was confirmed in the vesicles of the symbionts of R. pachyptila by electron energy loss spectrography (EELS). The proportion of (two-dimensional) area occupied by sulfur vesicles in the cells was found to be strongly correlated with trophosome color, both in individuals with uniformly colored trophosomes and individuals that exhibited a gradual color change along the length of their trophosomes. Elemental sulfur content was highly variable between individuals from a single collection, suggesting a high degree of microhabitat heterogeneity within vestimentiferan aggregations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn CC, Krivanek OL (1983) EELS atlas: a reference guide of electron energy loss spectra covering all stable elements. ASU HREM Facility and Gatan, Tempe

    Google Scholar 

  • Anderson AE, Childress JJ, Favuzzi JA (1987) Net uptake of CO2 driven by sulphide and thiosulphate oxidation in the bacterial symbiont-containing clam Solemya reidi. J Exp Biol 133:1

    Google Scholar 

  • Bosch C, Grassé P (1984a) Cycle partiel des bactéries chimioautotrophes symbiotiques et leurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifére). 1. Le trophosome et les bactériocytes. CR Hebd Seances Acad Sci Paris 299:371–376

    Google Scholar 

  • Bosch C, Grassé P (1984b) Cycle partiel des bactéries chimioautotrophes symbiotiques et leurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifére). 2. L’évolution des bactéries symbiotiques et des bactériocytes. CR Hebd Seances Acad Sci Paris 299:413–419

    Google Scholar 

  • Bright M, Sorgo A (2003) Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebr Biol 122:345–366

    Google Scholar 

  • Bright M, Keckeis H, Fisher CR (2000) An autoradiographic examination of carbon fixation, transfer, and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632

    Article  Google Scholar 

  • Brooks JM, Kennicutt MC, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon source. Science 238:1138

    CAS  Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61

    Article  CAS  Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    CAS  Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441

    Google Scholar 

  • Childress JJ, Arp AJ, Fisher CR (1984) Metabolic blood characteristics of the hydrothermal vent tube-worm Riftia pachyptila. Mar Biol 83:109–124

    Article  CAS  Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tube worm Riftia pachyptila Jones. Biol Bull (Woods Hole) 180:135

    Google Scholar 

  • Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve mollusc of the genus Thyasira. J Mar Biol Assoc UK 66:915–929

    CAS  Google Scholar 

  • Dando PR, Southward AJ, Southward EC, Terwilliger NB, Terwilliger RC (1985) Sulphur-oxidizing bacteria and hemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar Ecol Prog Ser 23:85–98

    CAS  Google Scholar 

  • Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc R Soc Lond Ser B Biol Sci 227:227–247

    CAS  Google Scholar 

  • De Burgh ME (1985) Evidence for a physiological gradient in the vestimentiferan trophosome: size-frequency analysis of bacterial populations and trophosome chemistry. Can J Zool 64:1095–1103

    Google Scholar 

  • Desbruyères D, Segonzac M (1997) (eds) Handbook of deep-sea hydrothermal vent fauna. IFREMER, Plouzane

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    CAS  PubMed  Google Scholar 

  • Felbeck H, Turner PJ (1995) CO2 transport in catheterized hydrothermal vent tubeworms, Riftia pachyptila (Vestimentifera). J Exp Zool 272:95–102

    Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin–Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291

    Article  CAS  Google Scholar 

  • Fisher CR, Childress JJ (1984) Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (phylum Pogonophora). Mar Biol Lett 5:171–184

    CAS  Google Scholar 

  • Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988) Physiology, morphology, and biochemical composition of Riftia pachyptila at Rose Garden in 1985. Deep-Sea Res 35:1745–1758

    Google Scholar 

  • Giere O, Langheld C (1987) Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaets. Mar Biol 93:641–650

    Article  Google Scholar 

  • Hand SC (1987) Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate–sulfur bacteria symbioses. Biol Bull (Woods Hole) 173:260–276

    Google Scholar 

  • Johnson KS, Childress JJ, Behler CL (1988a) Short term temperature variability in the Rose Garden hydrothermal vent field. Deep-Sea Res 35:1711–1722

    Google Scholar 

  • Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Behler CL (1988b) Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep-Sea Res 35:1723–1744

    Google Scholar 

  • Jones ML (1981) Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213:333–336

    Google Scholar 

  • Jones ML (1988) The Vestimentifera, their biology, systematic and evolutionary patterns. Oceanol Acta 8:69–82

    Google Scholar 

  • Kortje KH (1994) Image-EELS: a synthesis of energy-loss analysis and imaging. Scanning Microsc 8[Suppl]:227–287

    Google Scholar 

  • Krieger J, Giere O, Dubilier N (2000) Immunocytochemical localization of RubisCo in endosymbiotic bacteria of the gutless oligochaete Inandrilus leukodermatus (Annelida). Mar Biol 137:239–244

    Article  CAS  Google Scholar 

  • Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154

    CAS  PubMed  Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC, Boca Raton, Fla., USA, pp 125–167

  • Pasteris JD, Freeman JJ, Goffredi SK, Buck KR (2001) Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem Geol 180:3–18

    Article  CAS  Google Scholar 

  • Powell MA, Somero GN (1986) Adaptions to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull (Woods Hole) 171:274–290

    Google Scholar 

  • Rau GH (1981) Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food sources. Science 213:338–339

    CAS  Google Scholar 

  • Somero GN, Childress JJ, Anderson AE (1989) Transport, metabolism and detoxification of hydrogen sulfide in animals from sulfide-rich marine environment. Crit Rev Aquat Sci 1:591

    CAS  Google Scholar 

  • Sorgo A, Gaill F, Lechaire JP, Arndt C, Bright M (2002) Glycogen storage in the Riftia pachyptila trophosome: contribution of host and symbionts. Mar Ecol Prog Ser 231:115–120

    CAS  Google Scholar 

  • Stahl D, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411

    CAS  Google Scholar 

  • Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campyloceroides—a result of internal sulfur formations? Mar Ecol Prog Ser 193:251–259

    CAS  Google Scholar 

  • Truchet M, Jeantet AY, Ballan-Dufrancais C, Lechaire JP, Cosson R (1998) Le trophosome des vestimentifères, Riftia pachyptila et Tevnia jerichonana: bioaccumulations et metabolisme du soufre. Cah Biol Mar 39:129–141

    Google Scholar 

  • Vetter RD (1985) Elemental sulfur in the gills of three species of clams containing chemoautotrophic bacteria: a possible inorganic energy storage compound. Mar Biol 88:33–42

    Article  CAS  Google Scholar 

  • Vetter RD, Fry B (1998) Sulfur contents and sulfur isotopic composition of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Mar Biol 132:453–460

    Article  CAS  Google Scholar 

  • Weibel ER, Elias H (1967) Quantitative methods in morphology. Springer, Berlin Heidelberg New York

  • Wilmot DB, Vetter RD (1990) The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar Biol 106:273–283

    CAS  Google Scholar 

  • Winogradsky S (1887) Über Schwefelbakterien. Bot Ztg 45:489–610

    Google Scholar 

Download references

Acknowledgements

We would like to thank the captain and crew of the R.V. “Atlantis” and D.S.V. “Alvin” for their support during the “HOLIDAYS AT SEA” cruise in November/December 2001 and the “ANOTHER HOLIDAY AT SEA” cruise in December 2002. Technical assistance from P. Gahleitner and D. Gruber, critical comments from three anonymous reviewers, and support from B. Pflugfelder, R. Pflugfelder and M. Plank is gratefully acknowledged. Financial support came from the Austrian Science Foundation FWF 13762-BIO to M.B. and NSF OCE0002729 to C.R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pflugfelder.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflugfelder, B., Fisher, C.R. & Bright, M. The color of the trophosome: elemental sulfur distribution in the endosymbionts of Riftia pachyptila (Vestimentifera; Siboglinidae). Marine Biology 146, 895–901 (2005). https://doi.org/10.1007/s00227-004-1500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1500-x

Keywords

Navigation