Skip to main content
Log in

Interactions between auditory and somatosensory feedback for voice F 0 control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated the importance of both kinesthetic and auditory feedback for control of voice fundamental frequency (F 0). In the present study, a possible interaction between auditory feedback and kinesthetic feedback for control of voice F 0 was tested by administering local anesthetic to the vocal folds in the presence of perturbations in voice pitch feedback. Responses to pitch-shifted voice feedback were larger when the vocal fold mucosa was anesthetized than during normal kinesthesia. A mathematical model incorporating a linear combination of kinesthesia and pitch feedback simulated the main aspects of our experimental results. This model indicates that a feasible explanation for the increase in response magnitude with vocal fold anesthesia is that the vocal motor system uses both pitch and kinesthesia to stabilize voice F 0 shortly after a perturbation of voice pitch feedback has been perceived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreatta RD, Mann EA, Poletto CJ, Ludlow CL (2002) Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol 93:1622–1629

    PubMed  Google Scholar 

  • Binnie CA, Daniloff RG, Buckingham HW (1982) Phonetic disintegration in a five-year-old following sudden hearing loss. J Speech Hear Disord 47:181–189

    PubMed  CAS  Google Scholar 

  • Burnett TA, Freedland MB, Larson CR, Hain TC (1998) Voice F 0 responses to manipulations in pitch feedback. J Acoust Soc Am 103:3153–3161

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Liu H, Xu Y, Larson CR (2007) Voice F 0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am 121:1157–1163

    Article  PubMed  Google Scholar 

  • Donath TM, Natke U, Kalveram KT (2002) Effects of frequency-shifted auditory feedback on voice F 0 contours in syllables. J Acoust Soc Am 111:357–366

    Article  PubMed  Google Scholar 

  • Elliott L, Niemoeller A (1970) The role of hearing in controlling voice fundamental frequency. Int Audiol IX:47–52

    Article  Google Scholar 

  • Eyzaguirre C, Sampson S, Taylor JR (1966) The motor control of intrinsic laryngeal muscles in the cat. In: Granit R (ed) Nobel symposium I: muscular afferents and motor control. Wiley, New York, pp 209–225

  • Gozaine TC, Clark KF (2005) Function of the laryngeal mechanoreceptors during vocalization. Laryngoscope 115:81–88

    Article  PubMed  Google Scholar 

  • Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301

    Article  PubMed  Google Scholar 

  • Hain TC, Burnett TA, Kiran S, Larson CR, Singh S, Kenney MK (2000) Instructing subjects to make a voluntary response reveals the presence of two components to the audio-vocal reflex. Exp Brain Res 130:133–141

    Article  PubMed  CAS  Google Scholar 

  • Horak FB, Earhart GM, Dietz V (2001) Postural responses to combinations of head and body displacements: vestibular–somatosensory interactions. Exp Brain Res 141:410–414

    Article  PubMed  CAS  Google Scholar 

  • Horak FB, Shupert CL, Dietz V, Horstmann G (1994) Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp Brain Res 100:93–106

    Article  PubMed  CAS  Google Scholar 

  • Jones JA, Munhall KG (2002) The role of auditory feedback during phonation: studies of Mandarin tone production. J Phon 30:303–320

    Article  Google Scholar 

  • Kawahara H (1995) Hearing voice: transformed auditory feedback effects on voice pitch control. In: Computational auditory scene analysis and International joint conference on artificial intelligence, Montreal

  • Kirchner JA, Suzuki M (1968) Laryngeal reflexes and voice production. In: Annals of New York Academy of Sciences, pp 98–109

  • Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC (2001) Comparisons of voice F 0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am 110:2845–2848

    Article  PubMed  CAS  Google Scholar 

  • Leder SB, Spitzer JB, Kirchner JC (1987) Speaking fundamental frequency of postlingually profoundly deaf adult men. Ann Otol Rhinol Laryngol 96:322–324

    PubMed  CAS  Google Scholar 

  • Leonard RJ, Ringel RL (1979) Vocal shadowing under conditions of normal and altered laryngeal sensation. J Speech Hear Res 22:794–817

    PubMed  CAS  Google Scholar 

  • Li Z, Morris KF, Baekey DM, Shannon R, Lindsey BG (1999) Responses of simultaneously recorded respiratory-related medullary neurons to stimulation of multiple sensory modalities. J Neurophysiol 82:176–187

    PubMed  CAS  Google Scholar 

  • Ludlow C, Van Pelt F, Koda J (1992) Characteristics of late responses to superior laryngeal nerve stimulation in humans. Ann Otol Rhinol Laryngol 101:127–134

    PubMed  CAS  Google Scholar 

  • Mallard AR, Ringel RL, Horii Y (1978) Sensory contributions to control of fundamental frequency of phonation. Folia Phoniatr 30:199–213

    CAS  Google Scholar 

  • Mürbe D, Pabst F, Hofmann G, Sundberg J (2002) Significance of auditory and kinesthetic feedback to singers’ pitch control. J Voice 16:44–51

    Article  PubMed  Google Scholar 

  • Natke U, Kalveram KT (2001) Effects of frequency-shifted auditory feedback on fundamental frequency of long stressed and unstressed syllables. J Speech Lang Hear Res 44:577–584

    Article  PubMed  CAS  Google Scholar 

  • Osberger MJ, Hesketh LJ (1988) Speech and language disorders related to hearing impairment. In: Lass NJ, McReynolds LV, Northern JL, Yoder DE (eds) Handbood of speech-language pathology and audiology. B.C. Decker, Philadelphia, pp 858–886

    Google Scholar 

  • Sapir S, McClean M, Luschei ES (1983) Effects of frequency-modulated auditory tones on the voice fundamental frequency in humans. J Acoust Soc Am 73:1070–1073

    Article  PubMed  CAS  Google Scholar 

  • Sasaki C, Masafumi S (1976) Laryngeal reflexes in cat, dog, and man. Arch Otolaryngol 102:400–402

    PubMed  CAS  Google Scholar 

  • Shiba K, Miura T, Yuza J, Sakamoto T, Nakajima Y (1999) Laryngeal afferent inputs during vocalization in the cat. Neuroreport 10:987–991

    Article  PubMed  CAS  Google Scholar 

  • Shimojo S, Shams L (2001) Sensory modalities are not separate modalities: plasticity and interactions. Curr Opin Neurobiol 11:505–509

    Article  PubMed  CAS  Google Scholar 

  • Sorensen D, Horii Y, Leonard R (1980) Effects of laryngeal topical anesthesia on voice fundamental frequency perturbation. J Speech Hear Res 23:274–283

    PubMed  CAS  Google Scholar 

  • Sundberg J (1987) The science of the singing voice. Northern Illinois University Press, Dekalb

    Google Scholar 

  • Sundberg J, Iwarsson J, Billström A-MH (1993) Significance of mechanoreceptors in the subglottal mucosa for subglottal pressure control in singers. In: 22nd annual symposium care of the professional voice, Philadelphia

  • Sundberg J, Iwarsson J, Billstrom AH (1995) Significance of mechanoreceptors in the subglottal mucosa for subglottal pressure control in singers. J Voice 9:20–26

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Sasaki C (1977) Effect of various sensory stimuli on reflex laryngeal adduction. J Otol Rhinol Laryngol 86:30

    CAS  Google Scholar 

  • Svirsky MA, Lane H, Perkell JS, Wozniak J (1992) Effects of short-term auditory deprivation on speech production in adult cochlear implant users. J Acoust Soc Am 92:1284–1300

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Kitajima K, Gould W (1975) Laryngeal phonatory reflex. The effect of anesthetization of the internal branch of the superior laryngeal nerve: acoustic aspects. Ann Otol Rhinol Laryngol 84:206–212

    PubMed  CAS  Google Scholar 

  • Wyke B (1974) Laryngeal myotatic reflexes and phonation. Folia Phoniatr 26:249–264

    Article  CAS  Google Scholar 

  • Wyke B (1983) Neuromuscular control systems in voice production. In: Bless DM, Abbs JH (eds) Vocal fold physiology. College-Hill, San Diego, pp 71–76

    Google Scholar 

  • Xu Y, Larson C, Bauer J, Hain T (2004) Compensation for pitch-shifted auditory feedback during the production of Mandarin tone sequences. J Acoust Soc Am 116:1168–1178

    Article  PubMed  Google Scholar 

  • Yang CC, Chen SH (2005) Impact of topical anesthesia on acoustic characteristics of voice during laryngeal telescopic examination. Otolaryngol Head Neck Surg 132:110–114

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from NIH Grant No. DC006243-01A1. We thank Dr. David Conley for his assistance in administering anesthetic and Mr. Chun Liang Chan for computer programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Larson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, C.R., Altman, K.W., Liu, H. et al. Interactions between auditory and somatosensory feedback for voice F 0 control. Exp Brain Res 187, 613–621 (2008). https://doi.org/10.1007/s00221-008-1330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1330-z

Keywords

Navigation