Skip to main content
Log in

Effect of body weight support on cortical activation during gait in patients with stroke

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Treadmill training with body weight support (BWS) was shown to improve locomotion after stroke. We investigated whether BWS affected cortical activation during gait using an optical imaging system. In six patients with subcortical stroke, BWS lowered activation in the sensorimotor cortex (SMC) as assessed by task-related changes of oxygenated hemoglobin levels (P<0.01). The changes of SMC activation correlated with those of cadence (P<0.05). Improvement of asymmetry in SMC activation also correlated with improvement of asymmetric gait (P<0.05). In five age-matched controls, BWS increased overall activation (P<0.05) but did not modify gait parameters and there was no correlation between gait parameters and SMC activation. It is suggested that BWS might improve efficacy of SMC function in patients with stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong DM. (1988) The supraspinal control of mammalian locomotion. J Physiol 405:1–37

    PubMed  CAS  Google Scholar 

  • Ashburner J, Friston KJ. (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J, Neelin P, Collins DL, Evans A, Friston K. (1997) Incorporating prior knowledge into image registration. Neuroimage 6:344–352

    Article  PubMed  CAS  Google Scholar 

  • Boas DA, Franceschini MA, Dunn AK, Strangman G (2002) Noninvasiveimaging of cerebral activation with diffuse optical tomography. In: Frostig R (eds) Optical Imaging of Brain Function. CRC Press, Boca Raton, FL, pp 193–221

    Google Scholar 

  • Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125:2626–2634

    Article  PubMed  Google Scholar 

  • Drew T. (1988) Motor cortical cell discharge during voluntary gait modification. Brain Res 457:181–187

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ. (1995) Spatial registration and normalization of images. Hum Brain Map 2:165–189

    Article  Google Scholar 

  • Frostig RD, Lieke EE, Ts’o DY, Grinvald A. (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87:6082–6086

    Article  PubMed  CAS  Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. (1975) The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    PubMed  CAS  Google Scholar 

  • Grabowski A, Farley CT, Kram R (2005) Independent metabolic costs of supporting body weight and accelerating body mass during walking. J Appl Physiol 98:579–583

    Article  PubMed  Google Scholar 

  • Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, Mauritz KH. (1995) Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke 26:976–981

    PubMed  CAS  Google Scholar 

  • Hesse S, Bertelt C, Schaffrin A, Malezic M, Mauritz KH. (1994) Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support. Arch Phys Med Rehabil 75:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Kobayashi N, Tamura M. (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90:1657–1662

    PubMed  CAS  Google Scholar 

  • Jasdzewski G, Strangman G, Wagner J, Kwong KK, Poldrack RA, Boas DA. (2003) Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. Neuroimage 20:479–488

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J. (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16:817–826

    Article  PubMed  CAS  Google Scholar 

  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216

    PubMed  CAS  Google Scholar 

  • Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, van der Sluijs MC, van Erning LJ, Thijssen HO, Oeseburg B, Hoefnagels WH, Jansen RW. (2002) Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp 16:14–23

    Article  PubMed  Google Scholar 

  • Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, Kang J. (2000) Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil 81:849–852

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, Kang J. (2002b) Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 83:1370–1373

    Article  PubMed  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K. (2003) Longitudinal optical imaging study for locomotor recovery after stroke. Stroke 34:2866–2870

    Article  PubMed  Google Scholar 

  • Miyai I, Yagura H, Oda I, Konishi I, Eda H, Suzuki T, Kubota K. (2002a) Premotor cortex is involved in restoration of gait in stroke. Ann Neurol 52:188–194

    Article  PubMed  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS. (1890) On the regulation of the blood-supply of the brain. J Physiol (London) 11:85–108

    CAS  Google Scholar 

  • Pohl M, Mehrholz J, Ritschel C, Ruckriem S. (2002) Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 33:553–558

    Article  PubMed  Google Scholar 

  • Strangman G, Culver JP, Thompson JH, Boas DA. (2002) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17:719–731

    Article  PubMed  Google Scholar 

  • Sullivan KJ, Knowlton BJ, Dobkin BH. (2002) Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 83:683–691

    Article  PubMed  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K. (2004) Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23:1020–1026

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Threlkeld AJ, Cooper LD, Monger BP, Craven AN, Haupt HG (2003) Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension. Gait Posture 17:235–245

    PubMed  Google Scholar 

  • Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, Hueber D. (2001) Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med Phys 28:521–527

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Mizutani Y, Hachiya J (1996) Surface anatomy MR scanning of the brain using HASTE sequences. AJR Am J Roentgenol 167:1585–1587

    PubMed  CAS  Google Scholar 

  • Villringer A, Obrig H (2002) Near-infrared spectroscopy and imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping. The methods, 2nd edition. Academic Press, San Diego CA, pp 141–158

    Google Scholar 

  • Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. (1998) A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 29:1122–1128

    PubMed  CAS  Google Scholar 

  • Ward N, Frackowiak RSJ (2004) The cerebral basis of functional recovery. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (eds) Human brain function. 2nd edn. Academic Press, San Diego, CA, pp 105–123

    Google Scholar 

  • Wickelgren I. (1998) Teaching the spinal cord to walk. Science 279:319–321

    Article  PubMed  CAS  Google Scholar 

  • Wobst P, Wenzel R, Kohl M, Obrig H, Villringer A. (2001) Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation. Neuroimage 13:520–530

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Wolf U, Toronov V, Michalos A, Paunescu LA, Choi JH, Gratton E. (2002) Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study. Neuroimage 16:704–712

    Article  PubMed  Google Scholar 

  • Yagura H, Miyai I, Seike Y, Suzuki T, Yanagihara T. (2003) Benefit of inpatient multidisciplinary rehabilitation up to 1 year after stroke. Arch Phys Med Rehabil 84:1687–1691

    Article  PubMed  Google Scholar 

  • Yamamoto T, Kato T. (2002) Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation. Phys Med Biol 47:1121–1141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Funds for Medical Frontier Strategy Research and Funds for Research on Dementia and Fracture from the Ministry of Welfare, Health, and Labor in Japan, and Takeda Science Foundation. We thank Ikuo Konishi and Ichiro Oda, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan, and Mie Arita, Bobath Memorial Hospital for technical assistance for optical imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Miyai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyai, I., Suzuki, M., Hatakenaka, M. et al. Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res 169, 85–91 (2006). https://doi.org/10.1007/s00221-005-0123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0123-x

Keywords

Navigation