Skip to main content
Log in

Sensory re-weighting in human postural control during moving-scene perturbations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The aim of the current study was to further investigate a recently proposed “sensory re-weighting” hypothesis, by evoking anterior–posterior (AP) body sway using visual stimuli during sway-referencing of the support surface. Twelve healthy adults participated in this study. Subjects stood on the platform while looking at a visual scene that encompassed the full horizontal field of view. A sequence of scene movements was presented to the subjects consisting of multiple visual push/pull perturbations; in between the first two push/pull sequences, the scene either moved randomly or was stationary. The peak-squared velocity of AP center-of-pressure (COP) was computed within a 6 s window following each push and pull. The peak-squared velocity was lowest for the push/pull sequence immediately following the random moving scene. These results are consistent with the sensory re-weighting hypothesis, wherein the sensory integration process reduced the contribution of visual sensory input during the random moving scene interval. We also found evidence of habituation to moving scene perturbations with repeated exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asten WNJC van, Gielen CCAM, Denier van der Gon JJ (1988) Postural adjustments induced by simulated motion of differently structured environments. Exp Brain Res 73:371–383

    Article  PubMed  Google Scholar 

  • Bertenthal BI, Bai DL (1989) Infants sensitivity to optical flow for controlling posture. Dev Psy 25:936–945

    Article  Google Scholar 

  • Berthoz A, Lacour M, Soechting JF, Vidal PP (1979) The role of vision in the control of posture during linear motion. Prog Brain Res 50:197–209

    Article  PubMed  CAS  Google Scholar 

  • Berthoz A, Pavard B, Young RL (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Exp Brain Res 23:471–489

    PubMed  CAS  Google Scholar 

  • Bles W, Kapteyn TS, Brandt T, Arnold F (1980) The mechanism of physiological height vertigo. II. Posturography. Acta Otolaryngol (Stockh) 89:534–540

    Article  CAS  Google Scholar 

  • Borger LL, Whitney SL, Redfern MS, Furman JM (1999) The influence of dynamic visual environments on postural sway in the elderly. J Ves Res 9:197–205

    CAS  Google Scholar 

  • Bronstein AM (1986) Suppression of visually evoked postural responses. Exp Brain Res 63:655–658

    Article  PubMed  CAS  Google Scholar 

  • Chong RKY, Jones CL, Horak FB (1999) Postural set for balance control is normal in Alzheimer’s but not in Parkinson’s disease. J Gerontol A Biol 54(3):M129–M135

    CAS  Google Scholar 

  • Chong RKY, Horak FB, Woollacott MH (2000) Parkinson’s disease impairs the ability to change set quickly. J Neurol Sci 175(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center of pressure trajectories. Exp Brain Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Day BL, Severac Cauquil A, Bartolomei L, Pastor MA, Lyon IN (1997) Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. J Physiol 500:661–672

    PubMed  CAS  Google Scholar 

  • Fitzpatrick R, Burke D, Gandevia SC (1996) Loop gain of reflexes controlling human standingmeasured with the use of postural and vestibular disturbances. J Neurophysiol 76:3994–4008

    PubMed  CAS  Google Scholar 

  • Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Shepard J, Rowell L (eds) Exercise: regulation and integration of multiple Systems (Handbook of physiology, sect 12). Oxford University Press, New York, pp 255–292

  • Jeka J, Oie KS, Kiemel T (2000) Multisensory information for human postural control: integrating touch and vision. Exp Brain Res 134:107–125

    Article  PubMed  CAS  Google Scholar 

  • Johansson R, Magnusson M, Akesson M (1988) Identification of human postural dynamics. IEEE Trans Biomed Eng 35(10):858–869

    Article  PubMed  CAS  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Bio Cybern 80:299–308

    Article  Google Scholar 

  • Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. Perception Psychophy 15:529–532

    Google Scholar 

  • Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  • Lestienne F, Soechting J, Berthoz A (1977) Postural readjustments induced by linear motion of visual scenes. Exp Brain Res 28:363–384

    Article  PubMed  CAS  Google Scholar 

  • Magnusson M, Enbom H, Johansson R, Pyykko I (1990) Significance of pressor input from the human feet in anterior–posterior postural control. The effect of hypothermia on vibration-induced body-sway. Acta Otolaryngol 110:182–188

    Article  PubMed  CAS  Google Scholar 

  • Maki BE (1986) Selection of perturbation parameters for identification of the posture control system. Med Biol Eng Comput 24:561–568

    Article  PubMed  CAS  Google Scholar 

  • Morasso PG, Baratto L, Capra R, Spada G (1999) Internal models in the control of posture. Neural Netw 12:1173–1180

    Article  PubMed  Google Scholar 

  • Nashner LM (1971) A model describing vestibular detection of body sway motion. Acta Otolaryng 72:429–436

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM, Black FO, Wall C III (1982) Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. J Neurosci 2(5):536–544

    PubMed  CAS  Google Scholar 

  • Nashner LM, Wolfson P (1974) Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic vestibular simulation of the human labyrinth. Brain Res 67:255–268

    Google Scholar 

  • Oie KS, Kiemel T, Jeka JJ (2002) Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Cognitive Brain Res 14:164–176

    Article  Google Scholar 

  • Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107:1143–1163

    Article  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    PubMed  CAS  Google Scholar 

  • Peterka RJ (2003) Simplifying the complexities of maintaining balance. IEEE Eng Med Biol 22(2):63–68

    Article  PubMed  Google Scholar 

  • Peterka RJ, Benolken MS (1995) Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp Brain Res 105:101–110

    Article  PubMed  CAS  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  • Redfern MS, Furman JM (1994) Postural sway of patients with vestibular disorders during optic flow. J Ves Res 4:221–230

    CAS  Google Scholar 

  • Soames RW, Atha J (1982) The spectral characteristics of postural sway behaviour. Eur J Appl Physiol 49:169–177

    Article  CAS  Google Scholar 

  • Soechting JF, Berthoz A (1979) Dynamic role of vision in the control of posture in man. Exp Brain Res 36:551–561

    Article  PubMed  CAS  Google Scholar 

  • Sparto PJ, Jasko JG, Loughlin PJ (2004) Detecting postural responses to sinusoidal sensory inputs: a statistical approach. IEEE Trans Neur Sys Reh Eng 12(3):360–366

    Article  Google Scholar 

  • Sundermier L, Woollacott MH, Jensen JL, Moore S (1996) Postural sensitivity to visual flow in aging adults with and without balance problems. J Gerontol A Biol Sci Med Sci 51:M45–M52

    PubMed  CAS  Google Scholar 

  • Winter DA, Patla AE, Rietdyk S, Ishac MG (2001) Ankle muscle stiffness in the control of balance during quiet standing. J Neurophysiol 85:2630–2633

    PubMed  CAS  Google Scholar 

  • Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants DC04435, DC05205, and K25-AG01049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Loughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahboobin, A., Loughlin, P.J., Redfern, M.S. et al. Sensory re-weighting in human postural control during moving-scene perturbations. Exp Brain Res 167, 260–267 (2005). https://doi.org/10.1007/s00221-005-0053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0053-7

Keywords

Navigation