Skip to main content
Log in

The Kähler Quotient Resolution of \({{\mathbb{C}}^3/ \Gamma}\) Singularities, the McKay Correspondence and \({D = 3\,\,\mathcal{N} = 2}\) Chern–Simons Gauge Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We advocate that the generalized Kronheimer construction of the Kähler quotient crepant resolution \({\mathcal{M}_\zeta \longrightarrow \mathbb{C}^3/ \Gamma}\) of an orbifold singularity where \({\Gamma\subset \mathrm{SU(3)}}\) is a finite subgroup naturally defines the field content and the interaction structure of a superconformal Chern–Simons gauge theory. This latter is supposedly the dual of an M2-brane solution of D = 11 supergravity with \({\mathbb{C}\times\mathcal{M}_\zeta}\) as transverse space. We illustrate and discuss many aspects of this type of constructions emphasizing that the equation p\(\wedge\)p = 0which provides the Kähler analogue of the holomorphic sector in the hyperKähler moment map equations canonically defines the structure of a universal superpotential in the CS theory. Furthermore the kernel \({\mathcal{D}_\Gamma}\) of the above equation can be described as the orbit with respect to a quiver Lie group \({\mathcal{G}_\Gamma}\) of a special locus \({L_\Gamma \subset \mathrm{Hom}_\Gamma(\mathcal{Q}\otimes R,R)}\) that has also a universal definition. We provide an extensive discussion of the relation between the coset manifold \({\mathcal{G}_\Gamma/ \mathcal{F}_\Gamma}\), the gauge group \({\mathcal{F}_\Gamma}\) being the maximal compact subgroup of the quiver group, the moment map equations and the first Chern classes of the so named tautological vector bundles that are in one-to-one correspondence with the nontrivial irreps of \({\Gamma}\). These first Chern classes are represented by (1,1)-forms on \({\mathcal{M}_\zeta}\) and provide a basis for the cohomology group \({H^2(\mathcal{M}_\zeta)}\). We also discuss the relation with conjugacy classes of \({\Gamma}\) and we provide the explicit construction of several examples emphasizing the role of a generalized McKay correspondence. The case of the ALE manifold resolution of \({\mathbb{C}^2/ \Gamma}\) singularities is utilized as a comparison term and new formulae related with the complex presentation of Gibbons–Hawking metrics are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fré P., Grassi P.A.: The integral form of D = 3 Chern–Simons theories probing \({{\mathbb{C}}^n/ \Gamma}\) singularities. Fortsch. Phys. 65(10-11), 1700040 (2017)

    Article  MathSciNet  Google Scholar 

  2. Degeratu, A., Walpuski, T.: Rigid HYM connections on tautological bundles over ALE crepant resolutions in dimension three. In: SIGMA Symmetry Integrability Geometry: Methods and Applications, vol. 12, Paper No. 017, 23 (2016)

  3. Fabbri D., Fré P., Gualtieri L., Termonia P.: \({\mathrm{Osp(N|4)}}\) supermultiplets as conformal superfields on \({\partial\mathrm{AdS}_4}\) and the generic form of \({\mathcal{N}=2, D=3}\) gauge theories. Class. Quantum Gravity 17(1), 55 (2000) [arxiv:hep-th/9905134]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Billó M., Fabbri D., Fré P., Merlatti P., Zaffaroni A.: Rings of short \({\mathcal{N}=3}\) superfields in three dimensions and M-theory on \({\mathrm{AdS}_4\times \mathrm{N}^{010}}\). Class. Quantum Gravity 18(7), 1269 (2001). https://doi.org/10.1088/0264-9381/18/7/310 [arxiv:hep-th/0005219]

    Article  ADS  MATH  Google Scholar 

  5. Fré P., Gualtieri L., Termonia P.: The Structure of N=3 multiplets in AdS(4) and the complete Osp(3|4) x SU(3) spectrum of M theory on AdS(4) x N0,1,0. Phys. Lett. B 471, 27–38 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Fabbri D., Fré P., Gualtieri L., Termonia P.: M-theory on \({\mathrm{AdS}_4\times\mathrm{M}^{1,1,1}}\): the complete \({\mathrm{Osp(2|4)} \times\mathrm{SU(3)} \times\mathrm{SU(2)}}\) spectrum from harmonic analysis. Nucl. Phys. B 560(1-3), 617–682 (1999) [arxiv:hep-th/9903036]

    Article  ADS  MATH  Google Scholar 

  7. Fabbri D., Fré P., Gualtieri L., Reina C., Tomasiello A., Zaffaroni A., Zampa A.: 3D superconformal theories from Sasakian seven-manifolds: new non-trivial evidences for \({\mathrm{AdS}_4 / \mathrm{CFT}_3}\). Nucl. Phys. B 577(3), 547–608 (2000) [arxiv:hep-th/9907219]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Billó M., Fabbri D., Fré P., Merlatti P., Zaffaroni A.: Shadow multiplets in \({\mathrm{AdS}_4/ \mathrm{CFT}_3}\) and the super-Higgs mechanism: hints of new shadow supergravities. Nucl. Phys. B. 591(1-2), 139–194 (2000) [arxiv:hep-th/0005220]

    Article  ADS  MATH  Google Scholar 

  9. Freund P.G.O., Rubin M.A.: Dynamics of dimensional reduction. Phys. Lett. B 97(2), 233–235 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. Duff, M.J., Pope, C.N.: Kaluza-Klein supergravity and the seven sphere. In: Supersymmetry and supergravity, p. 183 (1983). ICTP/82/83-7, Lectures given at September School on Supergravity and Supersymmetry, Trieste, Italy, Sep 6-18, 1982. Published in Trieste Workshop 1982:0183 (QC178:T7:1982)

  11. D’Auria R., Fré P.: Spontaneous generation of Osp(4|8) symmetry in the spontaneous compactification of D=11 supergravity. Phys. Lett. B 121(2-3), 141–146 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Awada M.A., Duff M.J., Pope C.N.: \({\mathcal{N}=8}\) supergravity breaks down to \({\mathcal{N}=1}\). Phys. Rev. Lett. 50(5), 294 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Biran B., Englert F., de Wit B., Nicolai H.: Gauged N=8 supergravity and its breaking from spontaneous compactification. Phys. Lett. B 124(1-2), 45–50 (1983)

    Article  ADS  Google Scholar 

  14. Günaydin M., Warner N.P.: Unitary supermultiplets of Osp(8|4,R) and the spectrum of the S 7 compactification of 11-dimensional supergravity. Nucl. Phys. B 272(1), 99–124 (1986)

    Article  ADS  Google Scholar 

  15. Witten E.: Search for a realistic Kaluza–Klein theory. Nucl. Phys. B 186(3), 412–428 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Castellani L., D’Auria R., Fré P.: \({\mathrm{SU(3)} \otimes \mathrm{SU(2)} \otimes \mathrm{U(1)}}\) from D=11 supergravity. Nucl. Phys. B 239(2), 610–652 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. D’Auria R., Fré P.: On the spectrum of the \({{\mathcal N}=2\, \mathrm{SU}(3)\otimes\mathrm{SU}(2)\otimes\mathrm{U}(1)}\) gauge theory from D=11 supergravity. Class. Quantum Gravity 1(5), 447 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ceresole A., Fré P., Nicolai H.: Multiplet structure and spectra of \({{\mathcal N}=2}\) supersymmetric compactifications. Class. Quantum Gravity 2(2), 133 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Page D.N., Pope C.N.: Stability analysis of compactifications of D=11 supergravity with \({\mathrm{SU}(3)\times \mathrm{SU}(2)\times\mathrm{U}(1)}\) symmetry. Phys. Lett. B 145(5-6), 337–341 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. D’Auria R., Fré P., Van Nieuwenhuizen P.: \({{\mathcal N}=2}\) matter coupled supergravity from compactification on a coset G/H possessing an additional killing vector. Phys. Lett. B 136(5-6), 347–353 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. Page D.N., Pope C.N.: Which compactifications of D=11 supergravity are stable?. Phys. Lett. B 144(5-6), 346–350 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. D’Auria R., Fré P.: Universal Bose–Fermi mass-relations in Kaluza–Klein supergravity and harmonic analysis on coset manifolds with Killing spinors. Ann. Phys. 162(2), 372–412 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Castellani L., D’Auria R., Fré P., Pilch K., van Nieuwenhuizen P.: The bosonic mass formula for Freund–Rubin solutions of D=11 supergravity on general coset manifolds. Class. Quantum Gravity 1(4), 339 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. Freedman D.Z., Nicolai H.: Multiplet shortening in \({\mathrm{Osp}(N\vert 4)}\). Nucl. Phys. B 237(2), 342–366 (1984)

    Article  ADS  MATH  Google Scholar 

  25. Castellani L., Romans L.J., Warner N.P.: A classification of compactifying solutions for D=11 supergravity. Nucl. Phys. B 241(2), 429–462 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Fré P.: Supersymmetric M2-branes with Englert fluxes, and the simple group PSL(2, 7). Fortsch. Phys. 64(6-7), 425–462 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Blichfeldt H.F.: On the order of linear homogeneous groups. IV. Trans. Am. Math. Soc. 12(1), 39–42 (1911)

    MATH  MathSciNet  Google Scholar 

  28. Blichfeldt H.F.: Blichfeldt’s finite collineation groups. Bull. Am. Math. Soc. 24(10), 484–487 (1918)

    Article  MathSciNet  Google Scholar 

  29. Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N=6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 2008(10):091 (2008). https://doi.org/10.1088/1126-6708/2008/10/091 [arXiv:0806.1218 [hep-th]].

  30. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kronheimer P.B.: A Torelli-type theorem for gravitational instantons. J. Differ. Geom. 29(3), 685–697 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Markushevich D.: Resolution of \({C^3/H_{168}}\). Math. Ann. 308(2), 279–289 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cerchiai, B., Fré, P., Trigiante, M.: Exceptional Field Theory, the Group PSL(2,7) and Englert Equation. Paper in Preparation (2017)

  34. Ito, Y.: The McKay correspondence—a bridge from algebra to geometry. In: European Women in Mathematics (Malta, 2001), pp. 127–147. World Scientific Publishing, River Edge (2003)

  35. Roan S.-S.: Minimal resolutions of Gorenstein orbifolds in dimension three. Topology 35(2), 489–508 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ito, Y., Reid, M.: The McKay correspondence for finite subgroups of \({{\rm SL}(3, {\bf C})}\). In: Higher-Dimensional Complex Varieties (Trento, 1994), pp. 221–240. de Gruyter, Berlin (1996)

  37. Craw, A.: The McKay Correspondence and Representations of the McKay Quiver. PhD thesis, Warwick University,United Kingdom, (2001)

  38. Anselmi D., Billó M., Fré P., Girardello L., Zaffaroni A.: ALE manifolds and conformal field theories. Int. J. Mod. Phys. A 9, 3007–3058 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Bertolini M., Campos V.L., Ferretti G., Salomonson P., Fré P., Trigiante M.: BPS three-brane solution on smooth ALE manifolds with flux. Fortsch. Phys. 50, 802–807 (2002)

    Article  ADS  MATH  Google Scholar 

  40. Bertolini M., Campos V.L., Ferretti G., Fré P., Salomonson P., Trigiante M.: Supersymmetric three-branes on smooth ALE manifolds with flux. Nucl. Phys. B 617, 3–42 (2001)

    Article  ADS  MATH  Google Scholar 

  41. Arnold V.I.: Normal forms for functions near degenerate critical points, the weyl groups \({a_k,d_k,e_k}\) and Lagrangian singularities. Funct. Anal. Its Appl. 6, 254–272 (1972)

    Article  Google Scholar 

  42. Hitchin N.J., Karlhede A., Lindström U., Roček M.: Hyperkahler metrics and supersymmetry. Commun. Math. Phys. 108, 535 (1987)

    Article  ADS  MATH  Google Scholar 

  43. Eguchi T., Hanson A.J.: Selfdual solutions to Euclidean gravity. Ann. Phys. 120, 82 (1979)

    Article  ADS  MATH  Google Scholar 

  44. Gibbons G.W., Hawking S.W.: Gravitational multi-instantons. Phys. Lett. 78, 430 (1978)

    Article  Google Scholar 

  45. Gibbons G.W., Hawking S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. 66, 291–310 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  46. Fulton, W.: Introduction to Toric Varieties, vol. 131 of Annals of Mathematics Studies. Princeton University Press, Princeton (1993). The William H. Roever Lectures in Geometry.

  47. Dolgachev, I.: Weighted projective varieties. In: Group Actions and Vector Fields (Vancouver, 1981), vol. 956 of Lecture Notes in Mathematics, pp. 34–71. Springer, Berlin (1982)

  48. Beltrametti M., Robbiano L.: Introduction to the theory of weighted projective spaces. Expo. Math. 4(2), 111–162 (1986)

    MATH  MathSciNet  Google Scholar 

  49. Rossi M., Terracini L.: Linear algebra and toric data of weighted projective spaces. Rend. Semin. Mat. Univ. Politec. Torino 70(4), 469–495 (2012)

    MATH  MathSciNet  Google Scholar 

  50. Hartshorne, R.: Algebraic geometry. Springer, New York (1977). Graduate Texts in Mathematics, No. 52

  51. Ross J., Thomas R.: Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. J. Differ. Geom. 88(1), 109–159 (2011)

    Article  MATH  Google Scholar 

  52. Craw A.: An explicit construction of the McKay correspondence for A-Hilb \({\mathbb{C}^3}\). J. Algebra 285, 682–705 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Craw A., Ishii A.: Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient. Duke Math. J. 124, 259–307 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  54. Bianchi M., Morales J.F.: Anomalies & tadpoles. JHEP 03, 030 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Bianchi M., Fucito F., Morales J.F.: Dynamical supersymmetry breaking from unoriented D-brane instantons. JHEP 08, 040 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  56. Bianchi M., Fucito F., Morales J.F.: D-brane instantons on the T**6/Z(3) orientifold. JHEP 07, 038 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  57. Bianchi, M., Bruzzo, U., Fré, P., Grassi, P.A.: Work in Progress. (to appear) (2018)

  58. Chimento, S., Ortin, T.: On 2-dimensional Kaehler metrics with one holomorphic isometry. (2016) arXiv:1610.02078 [hep-th]

Download references

Acknowledgements

We acknowledge important clarifying discussions with our long time collaborators and friends Pietro Antonio Grassi, Dimitri Markushevich, Aleksander Sorin and Mario Trigiante. U.B.’s research is partially supported by PRIN 2015 “Geometria delle varietà algebriche” and INdAM-GNSAGA. This work was completed while U.B. was visiting the Instituto deMatemática e Estatística of the University of São Paulo, Brazil, supported by the FAPESP grant 2017/22091-9. He likes to thank FAPESP for providing support and his hosts, in particular P. Piccione, for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Bruzzo.

Additional information

Communicated by N. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruzzo, U., Fino, A. & Fré, P. The Kähler Quotient Resolution of \({{\mathbb{C}}^3/ \Gamma}\) Singularities, the McKay Correspondence and \({D = 3\,\,\mathcal{N} = 2}\) Chern–Simons Gauge Theories. Commun. Math. Phys. 365, 93–214 (2019). https://doi.org/10.1007/s00220-018-3203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3203-z

Navigation