Skip to main content
Log in

Quantum Charges and Spacetime Topology: The Emergence of New Superselection Sectors

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new form of superselection sectors of topological origin is developed. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*–algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts’ cohomological analysis to the case where 1–cocycles bear non-trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in the case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1–cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1–cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part much resembles what in literature is known as geometric phases. Indeed, by the very geometrical origin of the 1–cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov Y., Bohm D.: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Ashtekar A., Sen A.: On the role of space-time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua. J. Math. Phys. 21, 526–533 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Baumgärtel H., Wollenberg M.: Causal nets of operator algebras. Akademie-Verlag, Berlin (1992)

    MATH  Google Scholar 

  4. Beem J.K., Ehrlich P.E., Easley K.L.: Global Lorentzian geometry. 2nd ed. New York: Marcel Dekker, Inc., 1996

    MATH  Google Scholar 

  5. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  MATH  ADS  Google Scholar 

  6. Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77(2), 183–197 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London Ser. A 392(No.1802), 45–57 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Brunetti, R., Franceschini, L., Moretti, V.: Topological cocycles in two dimensional Einstein cylinder for massive bosons. To appear

  9. Brunetti, R., Fredenhagen, K.: Algebraic Quantum Field Theory. In: Encyclopedia of Mathematical Physics J.-P., Francoise, G., Naber, Tsou, S.T. (ed.) London: Elsevier, 2006. Available at http://arXiv.org/list/math-ph/0411072, 2004

  10. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996)

    Article  MATH  ADS  Google Scholar 

  11. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  12. Brunetti R., Ruzzi G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 270(1), 69–108 (2007)

    MATH  ADS  MathSciNet  Google Scholar 

  13. Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Carpi, S., Kawahigashi, Y., Longo, R.: Structure and classification of superconformal nets. http://arXiv.org/abs/0705.3609v2[math-ph], 2007

  15. Casimir H.B.G., Polder D.: The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 73, 360–372 (1948)

    Article  MATH  ADS  Google Scholar 

  16. Dixmier, J.: C*–algebras. Amsterdam - New York - Tokio: North Hollands Publishing Company, 1997

  17. Doebner H.D., Šťoviček P., Tolar J.: Quantization of kinematics on configuration manifolds. Rev. Math. Phys. 13, 799–845 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun. Math Phys. 23, 199–230 (1971); Local observables and particle statistics II. Commun. Math Phys. 35, 49–85 (1974)

    Google Scholar 

  19. Doplicher S., Roberts J.E.: A new duality theory for compact groups. Invent. Math. 98(1), 157–218 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection sectors in particle physics. Commun. Math. Phys. 131(1), 51–107 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Ehrenberg W., Siday R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B62, 8–21 (1949)

    ADS  Google Scholar 

  22. Ellis G.F.R., Hawking S.W.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  23. Fredenhagen K., Haag R.: Generally covariant quantum field theory and scaling limits. Commun. Math. Phys. 127(2), 273–284 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II: Geometric aspects and conformal invariance. Rev. Math Phys. Special Issue, 113–157 (1992)

  25. Freed D.S.: Classical Chern-Simons theory. I. Adv. Math. 113(2), 237–303 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13(2), 125–198 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gray B.: Homotopy Theory: An Introduction to Algebraic Topology. Academic Press, New York (1975)

    MATH  Google Scholar 

  28. Haag, R.: Local Quantum Physics. 2nd ed. Springer Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer, 1996

  29. Hannay J.H.: Angle variable anholonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A: Math. Gen. 18, 221–230 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. http://arxiv.org/abs/0705.3340v3[gr-qc], 2007

  32. Halvorson, H., Müger, M.: Algebraic quantum field theory. http://arxiv.org/list/math-ph/0602036, 2006, to appear in the Handbook of the Philosophy of Physicis, North Holland publisher

  33. Jahn H., Teller E.: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. Royal Soc. London. Series A, Math. Phys. Sci. 161, 220–235 (1937)

    Article  MATH  ADS  Google Scholar 

  34. Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c < 1. Ann. of Math. (2) 160, 493–522 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras I and II. Orlando-New York: Academic Press, Inc., 1983 and 1986

  36. Lachieze-Rey M., Luminet J.P.: Cosmic Topology. Phys. Rept. 254, 135–214 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  37. Landsman, N.P.: Quantization and superselection sectors. I. Transformation group C*-algebras. Rev. Math. Phys. 2, 45–72 (1990); Quantization and superselection sectors. II. Dirac monopole and Aharonov-Bohm effect. Rev. Math. Phys. 2, 73–104 (1990)

    Google Scholar 

  38. Longo R., Roberts J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Minguzzi, E., Sanchez, M.: The causal hierarchy of spacetimes. In: Baum, H., Alekseevsky, D. (eds.) Recent Developements in Pseudo-Riemanman Geometry, ESI Lect. Math. Phys., Zurich: Eur. Math. Soc. Pub. House, 2008, pp. 299–358; http://arxiv.org/list/gr-qc/0609119, 2006

  40. Morchio, G., Strocchi, F.: Quantum mechanics on manifolds and topological effects. http://arxiv.org/abs/0707.3357v2[math-ph], 2007

  41. Müger M.: The superselection structure of massive quantum field theories in 1 + 1 dimensions. Rev. Math. Phys. 10, 1147–1170 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. O’Neill B.: Semi–Riemannian geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  43. Pancharatnam S.: Generalized theory of interference, and its applications. Part I: Coherent pencils. Proc. Indian Acad. Sci. 44, 247–262 (1956)

    MathSciNet  Google Scholar 

  44. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179(3), 529–553 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Roberts J.E.: Local cohomology and superselection structure. Commun. Math. Phys 51(2), 107–119 (1976)

    Article  MATH  ADS  Google Scholar 

  46. Roberts, J.E.: Net cohomology and its applications to field theory. “Quantum Fields—Algebras, Processes”, L. Streit, ed., Wien, New York: Springer, 1980

  47. Roberts, J.E.: Lectures on algebraic quantum field theory. In: The algebraic theory of superselection sectors. (Palermo 1989), Kastler D. ed., River Edge, NJ: World Sci. Publishing, 1990, pp. 1–112

  48. Roberts, J.E.: More lectures in algebraic quantum field theory. In : Noncommutative geometry C.I.M.E. Lectures, Martina Franca, Italy, 2000. Editors: S. Doplicher, R. Longo, Berlin-Heidelberg-New York: Springer, 2003

  49. Roberts J.E., Ruzzi G.: A cohomological description of connections and curvature over posets. Theo. App. Cat. 16(30), 855–895 (2006)

    MATH  MathSciNet  Google Scholar 

  50. Roberts, J.E., Ruzzi, G., Vasselli, E.: A theory of bundles over posets. Available as http://arxiv.org/abs/0707.0240v2[math.AT], 2007

  51. Ruzzi G.: Essential properties of the vacuum sector for a theory of superselection sectors. Rev. Math. Phys. 15(10), 1255–1283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ruzzi G.: Punctured Haag duality in locally covariant quantum field theories. Commun. Math. Phys. 256, 621–634 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Ruzzi G.: Homotopy of posets, net-cohomology, and theory of superselection sectors in globally hyperbolic spacetimes. Rev. Math. Phys. 17(9), 1021–1070 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  54. Senovilla J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 29(5), 701–848 (1997)

    Google Scholar 

  55. Souradeep T.: Spectroscopy of cosmic topology. Indian J. Phys. 80, 1063–1069 (2006)

    Google Scholar 

  56. Verch R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields in curved spacetime. Rev. Math. Phys. 9(5), 635–674 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  57. Wald R.M.: General Relativity. Chicago, IL: University of Chicago Press, 1984

    MATH  Google Scholar 

  58. Wheeler J.A.: Geons. Phys. Rev. 97, 511–536 (1955)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeo Brunetti.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Klaus Fredenhagen on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunetti, R., Ruzzi, G. Quantum Charges and Spacetime Topology: The Emergence of New Superselection Sectors. Commun. Math. Phys. 287, 523–563 (2009). https://doi.org/10.1007/s00220-008-0671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0671-6

Keywords

Navigation