Skip to main content
Log in

Inverse Problem for Harmonic Oscillator Perturbed by Potential, Characterization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider the perturbed harmonic oscillator Ty=-y’’+x2y+q(x)y in L2(ℝ), where the real potential q belongs to the Hilbert space H={q’, xqL2(ℝ)}. The spectrum of T is an increasing sequence of simple eigenvalues λ n (q)=1+2n n , n ≥ 0, such that μ n → 0 as n→∞. Let ψ n (x,q) be the corresponding eigenfunctions. Define the norming constants ν n (q)=lim x ↑∞log |ψ n (x,q)/ψ n (-x,q)|. We show that for some real Hilbert space and some subspace Furthermore, the mapping ψ:q↦ψ(q)=({λ n (q)}0, {ν n (q)}0) is a real analytic isomorphism between H and is the set of all strictly increasing sequences s={s n }0 such that The proof is based on nonlinear functional analysis combined with sharp asymptotics of spectral data in the high energy limit for complex potentials. We use ideas from the analysis of the inverse problem for the operator -ypy, pL2(0,1), with Dirichlet boundary conditions on the unit interval. There is no literature about the spaces We obtain their basic properties, using their representation as spaces of analytic functions in the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bateman, H.: Higher transcendental functions. Vol. II, New York-Toronto-London: McGraw-Hill, 1953

  2. Chelkak, D., Kargaev, P., Korotyaev, E.: An Inverse Problem for an Harmonic Oscillator Perturbed by Potential: Uniqueness. Lett. Math. Phys. 64(1), 7–21 (2003)

    Article  MATH  Google Scholar 

  3. Chelkak, D.S.: Approximation in the Space of Spectral Data of a Perturbed Harmonic Oscillator. J. Math. Sci. 117(3), 4260–4269 (2003)

    Article  Google Scholar 

  4. Fedoryuk, M.: Asymptotic Analysis. Berlin-Heidelberg: Springer-Verlag, 1993

  5. Gurarie, D.: Asymptotic inverse spectral problem for anharmonic oscillators. Commun. Math. Phys. 112(3), 491–502 (1987)

    MATH  Google Scholar 

  6. Gurarie, D.: Asymptotic inverse spectral problem for anharmonic oscillators with odd potentials. Inverse Problems 5(3), 293–306 (1989)

    Article  MATH  Google Scholar 

  7. Gesztesy, F., Simon, B.: Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators. Trans. Am. Math. Soc. 348(1), 349–373 (1996)

    Article  MATH  Google Scholar 

  8. Gesztesy, F., Simon, B.: The xi function. Acta Math. 176(1), 49–71 (1996)

    MATH  Google Scholar 

  9. Gesztesy, F., Simon, B.: On local Borg-Marchenko uniqueness results. Commun. Math. Phys. 211(2), 273–287 (2000)

    Article  MATH  Google Scholar 

  10. Levitan, B.: Sturm-Liouville operators on the entire real axis with the same discrete spectrum. Math. USSR-Sb. 60(1), 77–106 (1988)

    MATH  Google Scholar 

  11. McKean, H.P., Trubowitz, E.: The spectral class of the quantum-mechanical harmonic oscillator. Commun. Math. Phys. 82(4), 471–495 (1981/82)

    MATH  Google Scholar 

  12. Olver, F.: Two inequalities for parabolic cylinder functions. Proc. Camb. Phil. Soc. 57, 811–822 (1961)

    MATH  Google Scholar 

  13. Pöschel, P., Trubowitz, E.: Inverse Spectral Theory. Boston: Academic Press, 1987

  14. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II, Fourier Analysis, Self-Adjointness. New York: Academic Press, 1975

  15. Zigmund, A.: Trigonometric series. London-New York: Cambridge Univ. Press, 1968

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Chelkak.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chelkak, D., Kargaev, P. & Korotyaev, E. Inverse Problem for Harmonic Oscillator Perturbed by Potential, Characterization. Commun. Math. Phys. 249, 133–196 (2004). https://doi.org/10.1007/s00220-004-1105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1105-8

Keywords

Navigation