Skip to main content

Advertisement

Log in

Highly sensitive detection of Smoothened based on the drug binding and rolling cycle amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metastases are the leading causes of death in cancer patients. Due to intimate connection with metastasis, Smoothened (Smo) has become a therapeutic target for antimetastatic drugs and can provide early warning of metastasis in breast cancer. Thus, we have developed an electrochemical method in Smo analysis based on small-molecule drugs. Smo on the metastatic cell surface can be internalized after combination with the small-molecule drug. The surplus small-molecule drug and rolling circle amplification (RCA) primer are competitively binding with capture probe on the electrode surface through the click chemical reaction. After RCA reaction, methylene blue is used to label the RCA product. In this process, the more Smo on the metastatic cell surface, the more RCA primer is bound with peptide on the electrode. Therefore, the obtained signal response is positively correlated to Smo on the cancer cells. Moreover, the RCA provides sufficiently high sensitivity, enabling the limit of detection of Smo to be calculated as 0.1 pM (S/N = 3). Owing to its desirable sensitivity, excellent reproducibility, and high selectivity, the proposed method may hold great potential in clinical practice in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7(12):683–92.

    Article  PubMed  Google Scholar 

  3. Wei X, Schlenkhoff C, Sopora C, Essler M, Ahmadzadehfar H. Successful treatment of hepatic metastases of hormone refractory prostate cancer using radioligand therapy with 177Lu-PSMA-617. Clin Nucl Med. 2016;41(11):894–95.

  4. Chambers AF, Groom AC, Macdonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Huang Y, Yu Y, Li W, Yin Y, Li G. Peptide-based method for detection of metastatic transformation in primary tumors of breast cancer. Anal Chem. 2015;87(18):9251–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rydzanicz M, Wrzesiński T, Bluyssen HAR, Wesoły J. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett. 2013;341(2):111–26.

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Liu K, Liu J, Yu ZTF, Xu X, Zhao L, et al. Highly efficient capture of circulating tumor cells using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Edit. 2011;50(13):3084–8.

    Article  CAS  Google Scholar 

  8. Ingham PW. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.

    Article  CAS  PubMed  Google Scholar 

  9. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002;16(21):2743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taipale J, Chen JK, Cooper MK, Wang BL, Mann RK, Milenkovic L, et al. Effects of oncogenic mutations in Smoothened and patched can be reversed by cyclopamine. Nature. 2000;406(6799):1005–9.

    Article  CAS  PubMed  Google Scholar 

  12. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF. Vertebrate Smoothened functions at the primary cilium. Nature. 2005;437(7061):1018–21.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang W, Yao X, Shan Z, Li W, Gao Y, Zhang Q. E3 ligase Herc4 regulates Hedgehog signaling through promoting Smoothened degradation. J Mol Cell Biol. 2019. https://doi.org/10.1093/jmcb/mjz024.

  14. Niyaz M, Khan MS, Wani RA, Shah OJ, Besina S, Mudassar S. Nuclear localization and overexpression of Smoothened in pancreatic and colorectal cancers. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.28477.

  15. Lu CY, Xu JJ, Wang ZH, Chen HY. A novel signal-amplified electrochemical aptasensor based on supersandwich G-quadruplex DNAzyme for highly sensitive cancer cell detection. Electrochem Commun. 2015;52:49–52.

    Article  CAS  Google Scholar 

  16. Yu T, Dai PP, Xu JJ, Chen HY. Highly sensitive colorimetric cancer cell detection based on dual signal amplification. Acs Appl Mater Inter. 2016;8:4434–41.

    Article  CAS  Google Scholar 

  17. Wu C, Liu J, Zhang P, Li J, Ji H, Yang X, et al. A recognition-before-labeling strategy for sensitive detection of lung cancer cells with a quantum dot-aptamer complex. Analyst. 2015;140(17):6100–7.

    Article  CAS  PubMed  Google Scholar 

  18. Jie G, Jie G. Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv. 2016;6(29):24780–5.

    Article  CAS  Google Scholar 

  19. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. P Natl Acad Sci. 2002;99(22):14071–6.

    Article  CAS  Google Scholar 

  20. Meloni AR, Fralish GB, Kelly P, Salahpour A, Chen JK, Wechslerreya RJ, et al. Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol. 2006;26(20):7550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharpe HJ, Signaling SFD. An oxysterol ligand for Smoothened. Nat Chem Biol. 2012;8(2):139–40.

    Article  CAS  PubMed  Google Scholar 

  22. Tiger BWL. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J Pharmacol Exp Ther. 2009;329:995–1005.

    Article  CAS  Google Scholar 

  23. Yang H, Xiang J, Wang N, Zhao Y, Hyman J, Li S, et al. Converse conformational control of smoothened activity by structurally related small molecules. J Biol Chem. 2009;284(31):20876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heine VM, Griveau A, Chapin C, Ballard PL, Chen JK, Rowitch DH. A small-molecule Smoothened agonist prevents glucocorticoid-induced neonatal cerebellar injury. Sci Transl Med. 2011;3(105):1–9.

  25. Wang G, Zhang Z, Xu Z, Yin H, Bai L, Ma Z, et al. Activation of the sonic Hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. BBA Mol Cell Res. 2010;1803(12):1359–67.

    CAS  Google Scholar 

  26. Dockendorff C, Nagiec MM, Weïwer M, Buhrlage S, Ting A, Nag PP, et al. Macrocyclic Hedgehog pathway inhibitors: optimization of cellular activity and mode of action studies. ACS Med Chem Lett. 2012;3(10):808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie H, Li H, Huang Y, Wang X, Yin Y, Li G. Combining peptide and DNA for protein assay: CRIP1 detection for breast cancer staging. Acs Appl Mater Inter. 2014;6(1):459–63.

    Article  CAS  Google Scholar 

  28. Yue H, Hao L, Yuanyuan Z, Weiwei L, Lizhou S, Genxi L. Ultrasensitive and feasibly achieved protein detection based on the integration of three signal amplification reactions via sharing a DNA sequence. Chem Commun. 2015;51(55):11004–7.

    Article  CAS  Google Scholar 

  29. Gao T, Liu F, Yang D, Yu Y, Wang Z, Li G. Assembly of selective biomimetic surface on an electrode surface: a design of nano-bio interface for biosensing. Anal Chem. 2015;87(11):5683–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rominger CM, Bee WLT, Copeland RA, Davenport EA, Gilmartin A, Gontarek R, et al. Evidence for allosteric interactions of antagonist binding to the Smoothened receptor. J Pharmacol Exp Ther. 2009;329(3):995–1005.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant No. 81703088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlong Li or Hao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2.28 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, K., Zhang, Y. et al. Highly sensitive detection of Smoothened based on the drug binding and rolling cycle amplification. Anal Bioanal Chem 411, 5721–5727 (2019). https://doi.org/10.1007/s00216-019-01950-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01950-8

Keywords

Navigation