Skip to main content
Log in

A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework–reduced graphene oxide–CdTe quantum dot hybrids

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Clenbuterol (CLB) is harmful to human health when used long term, and it has been listed by the World Anti-Doping Agency (WADA). In this work, a novel zinc-based metal-organic frameworks–reduced graphene oxide–CdTe quantum dots (ZnMOF-RGO-CdTe QDs) hybrid was used to construct an electrochemiluminescence (ECL) sensor for detecting CLB. CdTe QDs, loaded by RGO, exhibited an enhanced ECL signal. In addition, the ZnMOFs catalyzed OH generation by coreactant H2O2, which further strengthened the ECL signal of the CdTe QDs. The integration of ZnMOFs and RGO-CdTe QDs endowed the sensor with high sensitivity for CLB detection. The intensity of the ECL signal increased as the concentration of CLB increased. The linear range of CLB detection was 3.0 × 10−13 M to 6.0 × 10−10 M, and the detection limit was estimated to be 1.0 × 10−13 M. Furthermore, the sensor displayed a good repeatability and stability. The ZnMOF-RGO-CdTe QD hybrids described in this study provide a foundation for the development of new methods of detecting CLB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang W, Zhang Y, Wang J, Shi X, Ye J. Determination of β-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Science. 2010;85:302–5.

    CAS  Google Scholar 

  2. Vela J, Yanes EG, Stalcup AM. Quantitative determination of clenbuterol, salbutamol and tulobuterol enantiomers by capillary electrophoresis. Fresenius J Anal Chem. 2001;369:212–9.

    Article  CAS  Google Scholar 

  3. Brambilla G, Cenci T, Franconi F, Galarini R, Macri A, Rondoni F, et al. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett. 2000;114:47–53.

    Article  CAS  Google Scholar 

  4. Blanca J, Munoz P, Morgado M, Mendez N, Aranda A, Reuvers T, et al. Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry. Anal Chim Acta. 2005;529:199–205.

    Article  CAS  Google Scholar 

  5. Blomgren A, Berggren C, Holmberg A, Larsson F, Sellergren B, Ensing K. Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. J Chromatogr A. 2002;975:157–64.

    Article  CAS  Google Scholar 

  6. Harkins JD, Woods WE, Lehner AF, Fisher M, Tobin T. Clenbuterol in the horse: urinary concentrations determined by ELISA and GC/MS after clinical doses. J Vet Pharmacol Ther. 2001;24:7–14.

    Article  CAS  Google Scholar 

  7. Liu G, Chen HD, Peng HZ, Song SP, Gao JM, Lu JX, et al. A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosens Bioelectron. 2011;28:308–13.

    Article  CAS  Google Scholar 

  8. Meza-Marquez OG, Gallardo-Velazquez T, Dorantes-Alvarez L, Osorio-Revilla G, de la Rosa Arana JL. FT-MIR and Raman spectroscopy coupled to multivariate analysis for the detection of clenbuterol in murine model. Analyst. 2011;136:3355–65.

    Article  CAS  Google Scholar 

  9. Guo C, Shi F, Gong L, Tan H, Hu D, Zhang J. Ultra-trace analysis of 12 β2-agonists in pork, beef, mutton and chicken by ultrahigh-performance liquid chromatography-quadrupole-orbitrap tandem mass spectrometry. J Pharm Biomed Anal. 2015;107:526–34.

    Article  CAS  Google Scholar 

  10. Wu C, Sun D, Li Q, Wu KB. Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors Actuators B. 2012;168:178–84.

    Article  CAS  Google Scholar 

  11. Wu MS, Yuan DJ, Xu JJ, Chen HY. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem Sci. 2013;4:1182–8.

    Article  CAS  Google Scholar 

  12. Bao Y, Yang F, Yang XR. Capillary electrophoresis coupled with electrochemiluminescence for the facile separation and determination of salbutamol and clenbuterol in urine. Electroanalysis. 2012;24:1597–603.

    Article  CAS  Google Scholar 

  13. Lei JP, Ju HX. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30:1351–9.

    Article  CAS  Google Scholar 

  14. Rajabi HR, Shamsipur M, Khosravi AA, Khani O, Yousefi MH. Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim Acta A. 2013;107:256–62.

    Article  CAS  Google Scholar 

  15. Shamsipur M, Rajabi HR. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C. 2014;36:139–45.

    Article  CAS  Google Scholar 

  16. Fu XM, Tan XR, Yuan R, Chen SH. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Biosens Bioelectron. 2017;90:61–8.

    Article  CAS  Google Scholar 

  17. Roushani M, Shamsipur M, Rajabi HR. Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode. J Electroanal Chem. 2014;712:19–24.

    Article  CAS  Google Scholar 

  18. Cui RJ, Pan HC, Zhu JJ, Chen HY. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem. 2007;79:8494–501.

    Article  CAS  Google Scholar 

  19. Ma MN, Zhuo Y, Yuan R, Chai YQ. New signal amplification strategy using semicarbazide as coreaction accelerator for highly sensitive electrochemiluminescent aptasensor construction. Anal Chem. 2015;87:11389–97.

    Article  CAS  Google Scholar 

  20. Yan PP, Tang QH, Deng AP, Li JG. Ultrasensitive detection of clenbuterol by quantum dots based electrochemiluminescent immunosensor using gold nanoparticles as substrate and electron transport accelerator. Sensors Actuators B. 2014;191:508–15.

    Article  CAS  Google Scholar 

  21. Petryayeva E, Krull UJ. Quantum dot and gold nanoparticle immobilization for biosensing applications using multidentate imidazole surface ligands. Langmuir. 2012;28:13943–51.

    Article  CAS  Google Scholar 

  22. Yu XY, Chen ZH, Kuang DB, Su CY. A mild one-step process from graphene oxide and Cd2+ to a graphene-CdSe quantum dot nanocomposite with enhanced photoelectric properties. ChemPhysChem. 2012;13:2654–8.

    Article  CAS  Google Scholar 

  23. Li LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater. 2011;21:869–78.

    Article  CAS  Google Scholar 

  24. Ma HG, Li XJ, Yan T, Li Y, Zhang Y, Wu D, et al. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. Biosens Bioelectron. 2016;79:379–85.

    Article  CAS  Google Scholar 

  25. Miyaska H. Control of charge transfer in donor/acceptor metal-organic frameworks. Acc Chem Res. 2013;46:248–57.

    Article  Google Scholar 

  26. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari AR. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens Bioelectron. 2013;42:426–9.

    Article  CAS  Google Scholar 

  27. Yu YQ, Zhang HY, Chai YQ, Yuan R, Zhuo Y. A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification. Biosens Bioelectron. 2016;85:8–15.

    Article  CAS  Google Scholar 

  28. Chen HM, Zhang H, Yuan R. Chen SH novel double-potential electrochemiluminescence ratiometric strategy in enzyme-based inhibition biosensing for sensitive detection of organophosphorus pesticides. Anal Chem. 2017;89:2823–9.

    Article  CAS  Google Scholar 

  29. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112:933–69.

    Article  CAS  Google Scholar 

  30. Lin YX, Zhou Q, Tang DP, Niessner R, Yang HH, Knopp D. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal Chem. 2016;88:7858–786.

    Article  CAS  Google Scholar 

  31. Malik A, Nath M, Mohiyuddin S, Packirisamy G. Multifunctional CdSNPs@ZIF-8: potential antibacterial agent against GFP-expressing Escherichia coli and Staphylococcus aureus and efficient photocatalyst for degradation of methylene blue. ACS Omega. 2018;3:8288–308.

    Article  CAS  Google Scholar 

  32. Wu JL, Bai S, Shen XP, Jiang L. Preparation and characterization of graphene/CdS nanocomposites. Appl Surf Sci. 2010;257:747–51.

    Article  CAS  Google Scholar 

  33. Liu JX, Li R, Wang YF, Wang YW, Zhang XC, Fan CM. The active roles of ZIF-8 on the enhanced visible photocatalytic activity of Ag/AgCl: generation of superoxide radical and adsorption. J Alloys Compd. 2017;693:543–9.

    Article  CAS  Google Scholar 

  34. Tian ZF, Yao XX, Zhu YF. Simple synthesis of multifunctional zeolitic imidazolate frameworks-8/graphene oxide nanocrystals with controlled drug release and photothermal effect. Microporous Mesoporous Mater. 2017;237:160–7.

    Article  CAS  Google Scholar 

  35. Li ZY, Wang YH, Kong WJ, Wang ZR, Wang L, Fu ZF. Ultrasensitive detection of trace amount of clenbuterol residue in swine urine utilizing an electrochemiluminescent immunosensor. Sensors Actuators B. 2012;174:355–8.

    Article  CAS  Google Scholar 

  36. Qu XL, Lin H, Du SY, Sui JX, Zhang XL, Cao LM. Development of a nano-gold capillary immunochromatographic assay for rapid and semi-quantitative detection of clenbuterol residues. Food Anal Methods. 2016;9:2531–40.

    Article  Google Scholar 

  37. Guo PQ, Luo ZM, Xu XY, Zhou YL, Zhang BL, Chang RM, et al. Development of molecular imprinted column-on line-two dimensional liquid chromatography for selective determination of clenbuterol residues in biological samples. Food Chem. 2017;217:628–36.

    Article  CAS  Google Scholar 

  38. Cai C, Cheng HY, Wang YC, Yang MY, Yang YM. Simultaneous determination of four β2-agonist residues in pig feed and urine by capillary electrophoresis with field amplified sample injection and electrochemiluminescent detection. Anal Methods. 2013;5:4978–83.

    Article  CAS  Google Scholar 

  39. Tang YW, Lan JX, Gao X, Liu XY, Zhang DF, Wei LQ, et al. Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method. Food Chem. 2016;190:952–9.

    Article  CAS  Google Scholar 

  40. Huy BT, Seo MH, Zhang XF, Lee YI. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens Bioelectron. 2014;57:310–6.

    Article  CAS  Google Scholar 

  41. He PL, Wang ZY, Zhang LY, Yang WJ. Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol. Food Chem. 2009;112:707–14.

    Article  CAS  Google Scholar 

  42. Yang YY, Zhan H, Huang CS, Yang DP, Jia NQ. Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-au-PEI-hemin layered nanocomposites. Biosens Bioelectron. 2017;89:461–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21775122, 21775123, 51473136, 21575116) and Natural Science Foundation of Chongqing City (cstc2018jcyjAX0693), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, H., Chen, S. et al. A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework–reduced graphene oxide–CdTe quantum dot hybrids. Anal Bioanal Chem 410, 7881–7890 (2018). https://doi.org/10.1007/s00216-018-1404-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1404-0

Keywords

Navigation