Skip to main content
Log in

Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA), a typical endocrine disruptor, is widely used as a key monomer in the packaging industry. Residual monomer can transfer from the package material to the food and thereby pose a risk to the health of the consumer, so determination of BPA migration is highly important for food safety control. In this study, a simple but sensitive electrochemiluminescence (ECL) biosensor, which combines the characteristics of high selectivity of an aptamer and high sensitivity of ECL, has been developed to detect BPA from package materials. The aptamer was immobilized on a gold electrode surface through Au–S interaction. The aptamer was then hybridized with complementary DNA (CDNA) to form double-stranded DNA (dsDNA). Ru(phen)3 2+ can intercalate into the grooves of dsDNA and acts as an ECL indicator; high ECL intensity can therefore be detected from the electrode surface. In the presence of BPA, which can competitively bind with the aptamer owing to their high affinity, Ru(phen)3 2+ is released from the electrode surface and the ECL of the system is decreased. The decreasing ECL signal has a linear relationship with BPA in the range of 0.1–100 pM with a detection limit of 0.076 pM. The developed biosensor has been applied to detect migration of BPA from different categories of canned drink with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailin PS, Byrne M, Lewis S, Liroff R. Public awareness drives market for safer alternatives: bisphenol A market analysis report. Investor Environmental Health Network. 2008; 1–37.

  2. Geens T, Aerts D, Berthot C, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50:3725–40.

    Article  CAS  Google Scholar 

  3. Seachrist DD, Bonk KW, Ho SM, et al. A review of the carcinogenic potential of bisphenol A. Reprod Toxicol. 2016;59:167–82.

    Article  CAS  Google Scholar 

  4. Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007–2016). Fertil Steril. 2016;106:827–56.

    Article  CAS  Google Scholar 

  5. Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect. 2005;113:431–9.

    Article  CAS  Google Scholar 

  6. Jing P, Zhang X, Wu Z, et al. Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta. 2015;141:41–6.

    Article  CAS  Google Scholar 

  7. Selvaraj KK, Shanmugam G, Sampath S, et al. GC–MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment. Ecotoxicol Environ Saf. 2014;99:13–20.

    Article  CAS  Google Scholar 

  8. Cappiello A, Famiglini G, Palma P, et al. Determination of selected endocrine disrupting compounds in human fetal and newborn tissues by GC-MS. Anal Bioanal Chem. 2014;406:2779–88.

    Article  CAS  Google Scholar 

  9. Noonan GO, Ackerman LK, Begley TH. Concentration of bisphenol A in highly consumed canned foods on the US market. J Agric Food Chem. 2011;59:7178–85.

    Article  CAS  Google Scholar 

  10. Becerra V, Odermatt J. Detection and quantification of traces of bisphenol A and bisphenol S in paper samples using analytical pyrolysis-GC/MS. Analyst. 2012;137:2250–9.

    Article  CAS  Google Scholar 

  11. Ji W, Du L, Zhang Y, et al. Ultrasensitive fluorescence immunoassay for detection of bisphenol A in milk products using functionalized gold nanoparticles as probe. Food Anal Methods. 2015;8:2596–604.

    Article  Google Scholar 

  12. Mei Z, Chu H, Chen W, et al. Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosens Bioelectron. 2013;39:26–30.

    Article  CAS  Google Scholar 

  13. Lei YJ, Fang LZ, Akash MSH, et al. Development and comparison of two competitive ELISAs for the detection of bisphenol A in human urine. Anal Methods. 2013;5:6106–13.

    Article  CAS  Google Scholar 

  14. Qu H, Csordas AT, Wang J, Oh SS, et al. Rapid and label-free strategy to isolate aptamers for metal ions. ACS Nano. 2016;10:7558–65.

    Article  CAS  Google Scholar 

  15. Zheng B, Cheng S, Liu W, et al. Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor. Anal Biochem. 2013;438:144–9.

    Article  CAS  Google Scholar 

  16. Ma C, Liu H, Tian T, et al. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction. Biosens Bioelectron. 2016;83:15–8.

    Article  CAS  Google Scholar 

  17. Wu B, Chen N, Wang Q, et al. A simple label-free aptamer-based method for C-reactive protein detection. Anal Methods. 2016;8:4177–80.

    Article  CAS  Google Scholar 

  18. Urmann K, Arshavsky-Graham S, Walter JG, et al. Whole-cell detection of live Lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst. 2016;141:5432–40.

    Article  CAS  Google Scholar 

  19. Zhu Y, Cai Y, Xu L, et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl Mater Interfaces. 2015;7:7492–6.

    Article  CAS  Google Scholar 

  20. Liu YJ, Liu Y, Liu B. A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor. J Electroanal Chem. 2016;781:265–71.

    Article  CAS  Google Scholar 

  21. Guo W, Zhang A, Zhang X, et al. Multiwalled carbon nanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A. Anal Bioanal Chem. 2016;408:7173–80.

    Article  CAS  Google Scholar 

  22. Yang L, Zhang Y, Li R, et al. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron. 2015;70:268–74.

    Article  CAS  Google Scholar 

  23. Deiminiat B, Rounaghi GH, Arbab-Zavar MH, et al. A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol A. Sensors Actuators B Chem. 2017;242:158–66.

    Article  CAS  Google Scholar 

  24. Xu H, Liang S, Zhu X, et al. Enhanced electrogenerated chemiluminescence behavior of C3N4 QDs@ C3N4 nanosheet and its signal-on aptasensing for platelet derived growth factor. Biosens Bioelectron. 2017;92:695–701.

    Article  CAS  Google Scholar 

  25. Ding J, Gu Y, Li F, et al. DNA nanostructure-based magnetic beads for potentiometric aptasensing. Anal Chem. 2015;87:6465–9.

    Article  CAS  Google Scholar 

  26. Pan D, Gu Y, Lan H, et al. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal Chim Acta. 2015;853:297–302.

    Article  CAS  Google Scholar 

  27. Derikvandi Z, Abbasi AR, Roushani M, et al. Design of ultrasensitive bisphenol A–aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes. Anal Biochem. 2016;512:47–57.

    Article  CAS  Google Scholar 

  28. Beiranvand S, Azadbakht A. Electrochemical switching with a DNA aptamer-based electrochemical sensor. Mater Sci Eng C Mater Biol Appl. 2017;76:925–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by High level Talents Fund of Fujian Normal University (KY2013026),the Program for Young Teachers Education Research of Fujian Province (JA15567), the Nature Sciences Funding of Fujian Province (21165036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dihui Huang or Zhenyu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Ye, R., Shi, Y. et al. Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A. Anal Bioanal Chem 409, 7145–7151 (2017). https://doi.org/10.1007/s00216-017-0673-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0673-3

Keywords

Navigation