Skip to main content
Log in

Optical spectroscopic methods for intraoperative diagnosis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecular analytical methods are increasingly needed for a quick and reliable analysis of tissue in an operating room to provide more information during operations. In this Trends article, we highlight the current state and the developments of optical spectroscopic methods as intra operative tools. The clinical problem and challenges are illustrated on the example of brain tumor surgery. While fluorescence microscopy is already used, vibrational spectroscopy techniques will complement the standard method for brain tissue diagnostics. New portable instruments are currently available and can be stationed in the operating room for quick evaluation of tissue. The promise and limitations of fluorescence and vibrational spectroscopy as intraoperative tools are surveyed in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834

    Article  CAS  Google Scholar 

  2. Schaller BJ, Cornelius JF, Sandu N, Buchfelder M (2008) Molecular imaging of brain tumors: personal experience and review of the literature. Cur Mol Med 8:711–726

    Article  CAS  Google Scholar 

  3. Chin L, Andersen JN, Futreal PA (2011) Cancer genomics: from discovery science to personalized medicine. Nat Med 17:297–303

    Article  CAS  Google Scholar 

  4. Butte PV, Fang Q, Jo JA, Yong WH, Pikul BK, Black KL, Marcu L (2010) Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy. J Biomed Opt 15:027008. doi:10.1117/1.3374049

    Google Scholar 

  5. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) ALA Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicenter phase III trial. Lancet Oncol 7:392–401

    Article  CAS  Google Scholar 

  6. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolaevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–526

    Article  CAS  Google Scholar 

  7. Killory BD, Nakaji P, Maughan PH, Wait SD, Spetzler RF (2011) Evaluation of angiographically occult spinal dural arterovenous fistulae with surgical mircoscope-integrated intraoperative near-infrared indocyanine green angiography: report of 3 cases. Neurosurgery 68:781–787

    Article  Google Scholar 

  8. Marcu L, Hartl BA (2012) Fluorescence lifetime spectroscopy and imaging in neurosurgery. IEEE J Sel Top Quant Electr 18:1465–1477

    Article  CAS  Google Scholar 

  9. Vollrath A, Schubert S, Schubert US (2013) Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles—a review. J Mater Chem B 1:1994–2007

    Article  CAS  Google Scholar 

  10. Stelling A, Salzer R, Kirsch M, Sobottka SB, Geiger KD, Koch E, Schackert G, Steiner G (2011) Intraoperative optical diagnostics with vibrational spectroscopy. Anal Bioanal Chem 400:2745–2753

    Article  CAS  Google Scholar 

  11. Movasaghi Z, Rehman S, Rehman I (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectr Rev 43:134–179

    Article  CAS  Google Scholar 

  12. Wagener R, Röhn G, Schillinger G, Schröder R, Kobbe B, Ernestus RI (1999) Ganglioside profiles in human gliomas: quantification by microbore high performance liquid chromatography and correlation to histomorphology and grading. Acta Neurochir 141:1339–1345

    Article  CAS  Google Scholar 

  13. Steiner G, Shaw A, Choo-Smith LP, Abuid MH, Schackert G, Sobottka SB, Steller W, Salzer R, Mantsch HH (2003) Distinguishing and grading human gliomas by IR spectroscopy. Biopolymers 72:464–471

    Article  CAS  Google Scholar 

  14. Rehman S, Movasaghi Z, Darr JA, Rehman IU (2010) Fourier transform infrared spectroscopic analysis of breast cancer tissues; identifying differences between normal breast, invasive ductal carcinoma, and ductal carcinoma in situ of the breast. Appl Spectrosc Rev 45:355–368

    Article  CAS  Google Scholar 

  15. Sahu RK, Mordechai S, Manor E (2008) Nucleic acids absorbance in Mid IR and its effect on diagnostic variates during cell division: a case study with lymphoblastic cells. Biopolymers 89:993–1001

    Article  CAS  Google Scholar 

  16. White RJ (2008) RNA polymerases I and III, noncoding RNAs and cancer. Trends Genet 24:622–629

    Article  CAS  Google Scholar 

  17. Paluszkiewicz C, Kwiatek WM (2001) Analysis of human cancer prostate tissues using FTIR microscopy and SXIXE techniques. J Mol Struct 565(566):329–334

    Article  Google Scholar 

  18. Eikje NS, Aizawa K, Ozaki Y (2005) Vibrational spectroscopy for molecular characterization and diagnosis of benign, premalignant and malignant skin tumors. Biotech Ann Rev 11:191–225

    Article  CAS  Google Scholar 

  19. Mackanos MA, Hargrove J, Wolters R, Du CB, Friedland S, Soetikno RM, Contag CH, Arroyo MR, Crawford JM, Wang TD (2009) Use of an endoscope-compatible probe to detect colonic dysplasia with Fourier transform infrared spectroscopy. J Biomed Opt 14:044006. doi:10.1117/1.3174387

    Google Scholar 

  20. Mackanos AA, Contag CH (2010) Fiber-optic probes enable cancer detection with FTIR spectroscopy. Trends Biotech 28:317–323

    Article  CAS  Google Scholar 

  21. Petibois C, Desbat B (2010) Clinical application of FTIR imaging: new reasons for hope. Trends Biotech 28:495–500

    Article  CAS  Google Scholar 

  22. Lue N, Kang JW, Yu CC, Barman I, Dingari NC, Feld MS, Dasari RR, Fitzmaurice M (2012) Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment. PLoS One 7:e30887

    Article  CAS  Google Scholar 

  23. Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82:9058–9065

    Article  CAS  Google Scholar 

  24. Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N (2009) Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134:1029–1045

    Article  CAS  Google Scholar 

  25. Krafft C, Sobottka SB, Schackert G, Salzer R (2004) Analysis of human brain tissue, brain tumors, and tumor cells by infrared spectroscopic mapping. Analyst 129:921–925

    Article  CAS  Google Scholar 

  26. Kirsch M, Schackert G, Salzer R, Krafft C (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398:1707–1713

    Article  CAS  Google Scholar 

  27. Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7:137–145

    Article  CAS  Google Scholar 

  28. Galli R, Uckermann O, Winterhalder MJ, Sitoci-Ficici KH, Geiger KD, Koch E, Zumbusch A, Steiner G, Kirsch M (2012) Vibrational spectroscopy imaging and multiphoton microscopy of spinal cord injury. Anal Chem 84:8707–8714

    Article  CAS  Google Scholar 

  29. Alvarez-Puebla RA, Liz-Marzan LM (2010) SERS-based diagnosis and biodetection. Small 6:604–610

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, G., Kirsch, M. Optical spectroscopic methods for intraoperative diagnosis. Anal Bioanal Chem 406, 21–25 (2014). https://doi.org/10.1007/s00216-013-7401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7401-4

Keywords

Navigation