Skip to main content
Log in

Studies of the interface of conducting polymers with inorganic surfaces

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Many of the properties of multi-material systems and relevant devices depend on the interfaces between the different components. This review focuses on characterization of the interfaces between intrinsically conducting polymers and inorganic materials consisting of metals and metal oxides. These materials are chosen because of their importance in several analytical applications. Although use of conducting polymers and metals or metal oxides in analytical systems, specifically in sensing, is well established, the number of novel materials used for analytical purposes is continuously increasing. This further increases the possible number of effective combinations of different materials within multicomponent systems. As a consequence, innovative characterization techniques have become as important as more conventional techniques. On the other hand, sophisticated characterisation techniques are increasingly widespread and, consequently, also readily accessible. This critical review is not an exhaustive discussion of all possible analytical techniques suitable for characterization of interfaces. It is, instead, limited to an overview of the most effective, relatively widespread techniques, emphasising their most significant recent advances. Critical analysis of the individual techniques is complemented by a few selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AFM:

Atomic-force microscopy

An:

Aniline

EELS:

Electron energy loss spectroscopy

F8BT:

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1′,3]-thiadiazole)]

FIB:

Fast ion bombardment

HAXPES:

Hard X-ray photoelectron spectroscopy

ICP:

Intrinsically conducting polymer

IRRAS:

Infrared reflection absorption spectroscopy

ITO:

Indium tin oxide

NEXAFS:

Near-edge X-ray absorption fine structure

OLED:

Organic light-emitting diodes

P3HT:

Poly(3-hexylthiophene)

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEEM:

Photoemission electron microscope

PFB:

Poly[9,9′-dioctylfluorene-co-bis-N,N′-(4-butylphenyl)-bis-N,N′-phenyl-1,4-phenylenediamine]

PSS:

Polystyrenesulfonate

Py:

Pyrrole

RSoXR:

Resonant soft X-ray reflectivity

RSoXS:

Resonant soft-X-ray scattering

SAM:

Self-assembled monolayer

SE:

Spectroscopic ellipsometry

SECM:

Scanning electrochemical microscopy

SEM:

Scanning electron microscopy

SERS:

Surface-enhanced Raman spectroscopy

SFG:

Sum frequency generation

SIMS:

Secondary-ion mass spectrometry

STEM:

Scanning TEM

STM:

Scanning tunnelling microscopy

TEM:

Transmission electron microscopy

Th:

Thiophene

XAS:

X-ray absorption spectroscopy

XRR:

X-ray reflectivity

References

  1. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371

    Article  CAS  Google Scholar 

  2. Inzelt G (2008) Conducting polymers - a new era in electrochemistry. Monographs in electrochemistry. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  3. Gómez-Romero P, Sanchez C (2004) Hybrid materials, functional applications. An introduction. In: Gómez-Romero P, Sanchez C (eds) Functional hybrid materials. WILEY–VCH, Weinheim

    Google Scholar 

  4. IUPAC Goldbook (2012) International Union of Pure and Applied Chemistry. http://goldbook.iupac.org. Accessed 12 May 2012

  5. Terzi F, Pasquali L, Montecchi M, Nannarone S, Viinikanoja A, Aaritalo T, SalomaÃàki M, Lukkari J, Doyle BP, Seeber R (2011) New insights on the interaction between thiophene derivatives and Au surfaces. The case of 3,4-ethylenedioxythiophene and the relevant polymer. J Phys Chem C 115:17836–17844

    Article  CAS  Google Scholar 

  6. Prakash S, Karacor MB, Banerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64:233–254

    Article  CAS  Google Scholar 

  7. Zotti G, Vercelli B, Berlin A (2008) Monolayers and multilayers of conjugated polymers as nanosized electronic components. Acc Chem Res 41:1098–1109

    Article  CAS  Google Scholar 

  8. Terzi F, Seeber R, Pigani L, Zanardi C, Pasquali L, Nannarone S, Fabrizio M, Daolio S (2005) 3-Methylthiophene self-assembled monolayers on planar and nanoparticle Au surfaces. J Phys Chem B 109:19397–19402

    Article  CAS  Google Scholar 

  9. Mandler D, Kraus-Ophir S (2011) Self-assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 15:1535–1558

    Article  CAS  Google Scholar 

  10. Chen D, Li J (2006) Interfacial design and functionalization on metal electrodes through self-assembled monolayers. Surf Sci Rep 61:445–463

    Article  CAS  Google Scholar 

  11. Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151–257

    Article  CAS  Google Scholar 

  12. Pradeep T, Sandhyarani N (2002) Structure and dynamics of monolayers on planar and cluster surfaces. Pure Appl Chem 74:1593–1607

    Article  CAS  Google Scholar 

  13. Ma Z, Zaera F (2006) Organic chemistry on solid surfaces. Surf Sci Rep 61:229–281

    Article  CAS  Google Scholar 

  14. Sullivan TP, Huck WTS (2003) Reactions on monolayers: organic synthesis in two dimensions. Eur J Org Chem 2003:17–29

    Article  Google Scholar 

  15. Chechik V, Crooks RM, Stirling CJM (2000) Reactions and reactivity in self-assembled monolayers. Adv Mater 12:1161–1171

    Article  CAS  Google Scholar 

  16. Cheng L, Bocarsly AB, Bernasek SL, Ramanarayanan TA (1997) Adsorption and reaction of thiophene on the Fe(100) surface: selective dehydrogenation and polymerization. Surf Sci 374:357–372

    Article  CAS  Google Scholar 

  17. Bein T (1996) Conjugated and conducting nanostructures in zeolites. In: Chon H, Woo SI, Park S-E (eds) Recent advances and new horizons in zeolite science and technology, Volume 102. Elsevier

  18. Ballav N, Biswas M (2004) A conducting nanocomposite via intercalative polymerisation of thiophene in montmorillonite clay. Synth Met 142:309–315

    Article  CAS  Google Scholar 

  19. Pasquali L, Terzi F, Montecchi M, Doyle BP, Lukkari J, Zanfrognini B, Seeber R, Nannarone S (2009) Adsorption of 3,4-ethylenedioxythiophene (EDOT) on noble metal surfaces: A photoemission and X-ray absorption study. J Electron Spectrosc Relat Phenom 172:114–119

    Article  CAS  Google Scholar 

  20. Sánchez-Delgado RA (2002) Organometallic modeling of the hydrodesulfurization and hydrodenitrogenation reactions. Kluwer Academic Publishers, New York

    Google Scholar 

  21. Friend CM, Chen DA (1997) Fundamental studies of hydrodesulfurization by metal surfaces. Polyhedron 16:3165–3175

    Article  CAS  Google Scholar 

  22. Fleer GJ, Stuart MAC, Scheutjens JMHM (1993) Polymers at interfaces. Chapman & Hall, Cambridge

    Google Scholar 

  23. Farrokhpay S (2009) A review of polymeric dispersant stabilisation of titania pigment. Adv Colloid Interf Sci 151:24–32

    Article  CAS  Google Scholar 

  24. Fujimoto H, Nagashima U, Inokuchi H, Seki K, Cao Y, Nakahara H, Nakayama J, Hoshino M, Fukud K (1990) Ultraviolet photoemission study of oligothiophenes: π-band evolution and geometries. J Chem Phys 92:4077–4092

    Article  CAS  Google Scholar 

  25. Alberti A, Ballarin B, Guerra M, Macciantelli D, Mucci A, Parenti F, Schenetti L, Seeber R, Zanardi C (2003) Radical Ions from 3,3″′,3″′″-Tris(butylsulfanyl)-2,2′:5′,2″:5″,2″′,5″′,2″″:5″″,2″′″-sexithiophene: an experimental and theoretical study of the p- and n-doped oligomer. ChemPhysChem 4:1216–1225

    Article  CAS  Google Scholar 

  26. Compagnini G, De Bonis A, Cataliotti RS, Marletta G (2000) Spectroscopic evidence for adsorption-induced polymerisation of terthiophene at silver surfaces. PCCP 2:5298–5301

    Article  CAS  Google Scholar 

  27. Oçafrain M, Tran TK, Blanchard P, Lenfant S, Godey S, Vuillaume D, Roncali J (2008) Electropolymerized self-assembled monolayers of a 3,4-ethylenedioxythiophene–thiophene hybrid system. Adv Funct Mater 18:2163–2171

    Article  CAS  Google Scholar 

  28. Zotti G, Zecchin S, Vercelli B, Berlin A, Grimoldi S, Groenendaal L, Bertoncello R, Natali M (2005) Surface-initiated polymerization of thiophene and pyrrole monomers on poly(terthiophene) films and oligothiophene monolayers. Chem Mater 17:3681–3694

    Article  CAS  Google Scholar 

  29. Berlin A, Zotti G, Schiavon G, Zecchin S (1998) Adsorption of carboxyl-terminated dithiophene and terthiophene molecules on ITO electrodes and their electrochemical coupling to polymer layers. The influence of molecular geometry. J Am Chem Soc 120:13453–13460

    Article  CAS  Google Scholar 

  30. Zanardi C, Terzi F, Pigani L, Seeber R (2009) Electrode coatings consisting of polythiophene-based composites containing metal centres. In: Lechkov M, Prandzheva S (eds) Encyclopedia of polymer composites: Properties, performance and applications. Nova Publishers, New York

    Google Scholar 

  31. Wang X-S, Tang H-P, Li X-D, Hua X (2009) Investigations on the mechanical properties of conducting polymer coating-substrate structures and their influencing factors. Int J Mol Sci 10:5257–5284

    Article  CAS  Google Scholar 

  32. O'Neil KD, Semenikhin OA (2007) AFM phase imaging of electropolymerized polybithiophene films at different stages of their growth. J Phys Chem C 111:14823–14832

    Article  CAS  Google Scholar 

  33. O'Neil KD, Shaw B, Semenikhin OA (2007) On the origin of mesoscopic inhomogeneity of conducting polymers. J Phys Chem B 111:9253–9269

    Article  CAS  Google Scholar 

  34. Semenikhin OA, Jiang L, Iyoda T, Hashimoto K, Fujishima A (1996) Atomic force microscopy and Kelvin Probe force microscopy evidence of local structural inhomogeneity and nonuniform dopant distribution in conducting polybithiophene. J Phys Chem 100:18603–18606

    Article  CAS  Google Scholar 

  35. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers‚ persistent models and new concepts. Chem Rev 110:4724–4771

    Article  CAS  Google Scholar 

  36. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  37. Innocenti M, Loglio F, Pigani L, Seeber R, Terzi F, Udisti R (2005) In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode. Electrochim Acta 50:1497–1503

    Article  CAS  Google Scholar 

  38. del Valle MA, Cury P, Schrebler R (2002) Solvent effect on the nucleation and growth mechanisms of poly(thiophene). Electrochim Acta 48:397–405

    Article  Google Scholar 

  39. Zanardi C, Terzi F, Seeber R (2012) Polythiophenes and polythiopene-based composites in amperometric sensing. Anal Bioanal Chem. doi:10.1007/s00216-012-6318-7

  40. Bhattacharya A, De A (1996) Conducting composites of polypyrrole and polyaniline. a review. Prog Solid State Chem 24:141–181

    Article  CAS  Google Scholar 

  41. Sih BC, Wolf MO (2005) Metal nanoparticle-conjugated polymer nanocomposites. Chem Commun 1359–7345

  42. Sih BC, Teichert A, Wolf MO (2004) Electrodeposition of oligothiophene-linked gold nanoparticle films. Chem Mayer 16:2712–2718

    CAS  Google Scholar 

  43. Cligerman ML, King JA, Schulz KH, Meywers JD (2002) Evaluation of electrical conductivity models for conductive polymer composites. J Appl Pol Sci 83:1341–1356

    Article  CAS  Google Scholar 

  44. Brust M, Bethell D, Kiely CJ, Schiffrin DJ (1998) Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14:5425–5429

    Article  CAS  Google Scholar 

  45. Ahn H, Chandekar A, Kang B, Sung C, Whitten JE (2004) Electrical conductivity and vapor-sensing properties of ω-(3-thienyl)alkanethiol-protected gold nanoparticle films. Chem Mater 16:3274–3278

    Article  CAS  Google Scholar 

  46. Terzi F, Zanfrognini B, Zanardi C, Pigani L, Seeber R (2011) Poly(3,4-ethylenedioxythiophene)/Au-nanoparticles composite as electrode coating suitable for electrocatalytic oxidation. Electrochim Acta 56:3575–3579

    Article  CAS  Google Scholar 

  47. Dishner MH, Hemminger JC, Feher FJ (1996) Formation of a self-assembled monolayer by adsorption of thiophene on Au(111) and its photooxidation. Langmuir 12:6176–6178

    Article  CAS  Google Scholar 

  48. Ahn H, Whitten JE (2003) Vapor-deposition of aluminum on thiophene-terminated self-assembled monolayers on gold. J Phys Chem B 107:6565–6572

    Article  CAS  Google Scholar 

  49. Ghilane J, Martin P, Trippé-Allard G, Randriamahazaka H, Lacroix JC (2009) Grafting oligothiophenes on surfaces by diazonium electroreduction: a step toward ultrathin junction with well-defined metal/oligomer interface. J Am Chem Soc 131:14920–14927

    Article  CAS  Google Scholar 

  50. Rohwerder M, Isik-Uppenkamp S, Amarnath CA (2011) Application of the Kelvin Probe method for screening the interfacial reactivity of conducting polymer based coatings for corrosion protection. Electrochim Acta 56:1889–1893

    Article  CAS  Google Scholar 

  51. Sugiyama M, Sigesato G (2004) A review of focused ion beam technology and its applications in transmission electron microscopy. J Electron Microsc 53:527–536

    Article  Google Scholar 

  52. Malgas G, Arendse C, Mavundla S, Cummings F (2008) Interfacial analysis and properties of regioregular poly(3-hexyl thiophene) spin-coated on an indium tin oxide-coated glass substrate. J Mat Sci 43:5599–5604

    Article  CAS  Google Scholar 

  53. Bulle-Lieuwma CWT, van Gennip WJH, van Duren JKJ, Jonkheijm P, Janssen RAJ, Niemantsverdriet JW (2003) Characterization of polymer solar cells by TOF-SIMS depth profiling original research article. Appl Surf Sci 203–204:547–550

    Article  Google Scholar 

  54. Macpherson JV (2003) Electrochemical AFM. In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry, Volume 3. Wiley, Weinheim

    Google Scholar 

  55. Gewirth AA, Niece BK (1997) Electrochemical applications of in situ scanning probe microscopy. Chem Rev 97:1129–1162

    Article  CAS  Google Scholar 

  56. de Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nano 6:695–704

    Article  CAS  Google Scholar 

  57. see, for example, Electron microscopy sciences - www.emsdiasum.com and Hummingbird Scientific - www.hummingbirdscientific.com

  58. Holze R (2009) Surface and interface analysis - an electrochemists toolbox, vol 74. Springer Ser Chem Phys. Springer, Berlin

    Google Scholar 

  59. Alkire RC, Kolb DM, Lipkowski J, Ross PN (2008) Diffraction and spectroscopic methods in electrochemistry, vol 4. Advances in electrochemical science and engineering. WILEY–VCH, Weinheim

    Google Scholar 

  60. see, for example, Renishaw - http://www.renishaw.com

  61. Xie Z, Zhou X, Tao X, Zheng Z (2012) Polymer nanostructures made by scanning probe lithography: recent progress in material applications. Macromol Rapid Commun 33:359–373

    Article  CAS  Google Scholar 

  62. Pailleret A, Semenikhin O (2010) Nanoscale inhomogeneity of conducting-polymer-based materials. In: Eftekhari A (ed) Nanostructured conductive polymers. Wiley, New York

    Google Scholar 

  63. Noh J, Ito E, Nakajima K, Kim J, Lee H (2002) High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111). J Phys Chem B 106:7139–7141

    Article  CAS  Google Scholar 

  64. de Boer RWI, Gershenson ME, Morpurgo AF, Podzorov V (2004) Organic single-crystal field-effect transistors. Phys Stat Sol 201:1302–1331

    Article  CAS  Google Scholar 

  65. Keg P, Lohani A, Fichou D, Lam YM, Wu Y, Ong BS, Mhaisalkar SG (2008) Direct observation of alkyl chain interdigitation in conjugated polyquarterthiophene self-organized on graphite surfaces. Macromol Rapid Commun 29:1197–1202

    Article  CAS  Google Scholar 

  66. Lipton-Duffin JA, Miwa JA, Kondratenko M, Cicoira F, Sumpter BG, Meunier V, Perepichka DF, Rosei F (2010) Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. PNAS 107:11200–11204

    Article  CAS  Google Scholar 

  67. Cho SH, Park S-M (2006) Electrochemistry of conductive polymers 39. contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy. J Phys Chem B 110:25656–25664

    Article  CAS  Google Scholar 

  68. Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. PCCP 9:802–823

    Article  CAS  Google Scholar 

  69. Mirkin MV, Nogala W, Velmurugan J, Wang Y (2011) Scanning electrochemical microscopy in the 21st century. Update 1: five years after. PCCP 13:21196–21212

    Article  CAS  Google Scholar 

  70. Horrocks BR (2007) Scanning electrochemical microscopy. In: Encyclopedia of electrochemistry. Wiley, Berlin

    Google Scholar 

  71. Danieli T, Colleran J, Mandler D (2011) Deposition of Au and Ag nanoparticles on PEDOT. PCCP 13:20345–20353

    Article  CAS  Google Scholar 

  72. Sheffer M, Mandler D (2009) Control of locally deposited gold nanoparticle on polyaniline films. Electrochim Acta 54:2951–2956

    Article  CAS  Google Scholar 

  73. Tallman D, Spinks G, Dominis A, Wallace G (2002) Electroactive conducting polymers for corrosion control. J Solid State Electrochem 6:73–84

    CAS  Google Scholar 

  74. Spinks G, Dominis A, Wallace G, Tallman D (2002) Electroactive conducting polymers for corrosion control. J Solid State Electrochem 6:85–100

    Article  CAS  Google Scholar 

  75. He J, Gelling VJ, Tallman DE, Bierwagen GP, Wallace GG (2000) Conducting polymers and corrosion III. A scanning vibrating electrode study of poly(3-octyl pyrrole) on steel and aluminum. J Electrochem Soc 147:3667–3672

    Google Scholar 

  76. Egerton RF (2009) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72:016502

    Article  CAS  Google Scholar 

  77. Williams DB, Carter CB (1996) Transmission electron microscopy: A textbook for materials science. Plenum Press, New York

    Google Scholar 

  78. see, for example, Oxford instruments - www.oxford-instruments.com

  79. Luo J-J, Daniel IM (2003) Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol 63:1607–1616

    Article  CAS  Google Scholar 

  80. Gence L, Callegari V, Melinte S, Demoustier-Champagne S, Long Y, Dinescu A, Duvail JL (2010) Conjugated polymer and hybrid polymer–metal single nanowires: Correlated characterization and device integration. In: Lupu N (ed) Nanowires science and technology. Intech, Rijeka

    Google Scholar 

  81. Gence L, Callegari V, Faniel S, Vlad A, Dutu C, Melinte S, Demoustier-Champagne S, Bayot V (2008) Size related transport mechanisms in hybrid metal–polymer nanowires. Phys Status Solidi A 205:1447–1450

    Article  CAS  Google Scholar 

  82. Gence L, Faniel S, Gustin C, Melinte S, Bayot V, Callegari V, Reynes O, Demoustier-Champagne S (2007) Structural and electrical characterization of hybrid metal–polypyrrole nanowires. Phys Rev B 76:115415

    Article  CAS  Google Scholar 

  83. Barner BJ, Green MJ, Saez EI, Corn RM (1991) Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics. Anal Chem 63:55–60

    Article  CAS  Google Scholar 

  84. Kudelski A (2005) Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: a review. Vib Spectrosc 39:200–213

    Article  CAS  Google Scholar 

  85. Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964

    Article  CAS  Google Scholar 

  86. Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39:4820–4844

    Article  CAS  Google Scholar 

  87. Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3:31–37

    Article  CAS  Google Scholar 

  88. Alexander TA (2008) Development of methodology based on commercialized SERS-Active substrates for rapid discrimination of poxviridae virions. Anal Chem 80:2817–2825

    Article  CAS  Google Scholar 

  89. see, for example, Renishaw diagnostics - http://www.renishawdiagnostics.com

  90. Kocharova N, Lukkari J, Viinikanoja A, Aaritalo T, Kankare J (2002) Doping-induced structural changes of conducting polyalkoxythiophene on the chemically modified gold surface:‚äâ an in situ surface enhanced resonance Raman spectroscopic study. J Phys Chem B 106:10973–10981

    Article  CAS  Google Scholar 

  91. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    Article  CAS  Google Scholar 

  92. Schatz GC, Duyne RPV (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Weinheim

    Google Scholar 

  93. Beattie DA, Bain CD (2002) Sum-frequency spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Weinheim

    Google Scholar 

  94. Miyamae T (2012) Probing metal/organic interfaces using doubly-resonant sum frequency generation vibrational spectroscopy. In: Dd C (ed) Vibrational spectroscopy. InTech, Rijeka

    Google Scholar 

  95. Miyamae T, Tsukagoshi K, Mizutani W (2010) Two-color sum frequency generation study of poly(9,9-dioctylfluorene)/electrode interfaces. PCCP 12:14666–14669

    Article  CAS  Google Scholar 

  96. Raposo M, Pontes RS, Mattoso LHC, Oliveira ON (1997) Kinetics of adsorption of poly(o-methoxyaniline) self-assembled films. Macromolecules 30:6095–6101

    Article  CAS  Google Scholar 

  97. Finklea HO (1996) Electrochemistry of organized monolayers of thiols and related molecules on electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 19. Marcel Dekker, New York

    Google Scholar 

  98. Fujiwara H (2007) Spectroscopic ellipsometry: principles and applications. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  99. Kim Y-T, Collins RW, Vedam K, Allara DL (1991) Real time spectroscopic ellipsometry: in situ characterization of pyrrole electropolymerization. J Electrochem Soc 138:3266–3275

    Article  CAS  Google Scholar 

  100. Hamnett A, Hillman AR (1988) An ellipsometric study of the nucleation and growth of polythiophene films. J Electrochem Soc 135:2517–2524

    Article  CAS  Google Scholar 

  101. Grande CD, Tria MC, Jiang G, Ponnapati R, Advincula R (2011) Macromolecules 44:966–975

    Article  CAS  Google Scholar 

  102. Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley DDC (2005) Ellipsometric characterization of the optical constants of polyfluorene gain media. Adv Funct Mat 15:925–933

    Article  CAS  Google Scholar 

  103. Winfield LM, Donley CL, Kim J-S (2007) Anisotropic optical constants of electroluminescent conjugated polymer thin films determined by variable-angle spectroscopic ellipsometry. J Appl Phys 102:063505-1-7

    Google Scholar 

  104. Ramsdale CM, Greenham NC (2003) The optical constants of emitter and electrode materials in polymer light-emitting diodes. J Phys D 36:L29–L34

    Article  CAS  Google Scholar 

  105. Prato M, Alloisio M, Jadhav SA, Chincarini A, Svaldo-Lanero T, Bisio F, Cavalleri O, Canepa M (2009) Optical properties of disulfide-functionalized diacetylene self-assembled monolayers on gold: a spectroscopic ellipsometry study. J Phys Chem C 113:20683–20688

    Article  CAS  Google Scholar 

  106. Prato M, Moroni R, Bisio F, Rolandi R, Mattera L, Cavalleri CM (2008) Optical characterization of thiolate self-assembled monolayers on Au(111). J Phys Chem C 112:3899–3906

    Article  CAS  Google Scholar 

  107. Briggs D, Seah MP (eds) (1996) Practical surface analysis. Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, Chichester

    Google Scholar 

  108. Beamson G, Briggs D (1992) High resolution XPS of organic polymers - The scienta ESCA300 database. Wiley, New York

    Google Scholar 

  109. Nobuta T, Ogawa T (2009) Depth profile XPS analysis of polymeric materials by C60+ ion sputtering. J Mater Sci 44:1800–1812

    Article  CAS  Google Scholar 

  110. Chen Y-Y, Yu B-Y, Wang W-B, Hsu M-F, Lin W-C, Lin Y-C, Jou J-H, Shyue J-J (2008) X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering. Anal Chem 80:501–505

    Article  CAS  Google Scholar 

  111. Claessen R, Sing M, Paul M, Berner G, Wetscherek A, Muller A, Drube W (2009) Hard X-ray photoelectron spectroscopy of oxide hybrid and heterostructures: a new method for the study of buried interfaces. New J Phys 11:125007

    Article  CAS  Google Scholar 

  112. Kobayashi K (2009) Hard X-ray photoemission spectroscopy. Nucl Inst Methods A 601:32–47

    Article  CAS  Google Scholar 

  113. Torelli P, Sacchi M, Cautero G, Cautero M, Krastanov B, Lacovig P, Pittana P, Sergo R, Tommasini R, Fondacaro A, Offi F, Paolicelli G, Stefani G, Grioni M, Verbeni R, Monaco G, Panaccione G (2005) Experimental setup for high energy photoemission using synchrotron radiation. Rev Sci Instrum 76:023909

    Article  CAS  Google Scholar 

  114. Borgatti F, Bergenti I, Bona F, Dediu V, Fondacaro A, Huotari S, Monaco G, MacLaren DA, Chapman JN, Panaccione G (2010) Understanding the role of tunneling barriers in organic spin valves by hard X-ray photoelectron spectroscopy. Appl Phys Lett 96:043306

    Article  CAS  Google Scholar 

  115. Brumbach MT (2012) Photoelectronic characterization of heterointerfaces. SANDIA REPORT SAND2012-1354. Sandia National Laboratories

  116. see, for example, SCIENTA HiPP – brochure at http://www.vgscienta.com

  117. Stohr J (1996) NEXAFS spectroscopy. Springer Series in Surface Sciences, vol 25, Berlin Heidelberg

  118. Watts B, Swaraj S, Nordlund D, Lüning J, Ade H (2011) Calibrated NEXAFS spectra of common conjugated polymers. J Chem Phys 134:024702

    Article  CAS  Google Scholar 

  119. Hitchcock AP, Tourillon G, Braun W (1989) Inner-shell excitation studies of conducting organic polymers: selenophene, 3-methyl selenophene, and their polymers. Can J Chem 67:1819–1827

    Article  CAS  Google Scholar 

  120. Watts B, Swaraj S, Nordlund D, Läning J, Ade H (2011) Calibrated NEXAFS spectra of common conjugated polymers. J Chem Phys 134:024702-1-15

    Google Scholar 

  121. Tourillon G, Guay D, Fontaine A, Garrett R, Williams GP (1990) Characterization of metal/organic molecule and metal/polymer interfaces by NEXAFS spectroscopy. Faraday Discuss Chem Soc 89:275–290

    Article  CAS  Google Scholar 

  122. Nielsen JA (2001) Elements of modern X-ray physics. Wiley, New York

    Google Scholar 

  123. Tolan M (1999) X-Ray scattering from soft-matter thin films. Springer, Berlin Heidelberg

    Google Scholar 

  124. Daillant J, Gibaud A (2009) X-ray and neutron reflectivity: Principles and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  125. Meier R, Ruderer MA, Diethert A, Kaune G, Kärstgens V, Roth SV, Müller-Buschbaum P (2011) Influence of film thickness on the phase separation mechanism in ultrathin conducting polymer blend films. J Phys Chem B 115:2899–2909

    Article  CAS  Google Scholar 

  126. Tarabia M, Hong H, Davidov D, Kirstein S, Steitz R, Neumann R, Avny Y (1998) Neutron and X-ray reflectivity studies of self-assembled heterostructures based on conjugated polymers. J Appl Phys 83:725-1-8

    Google Scholar 

  127. Wei KH, Jeng U, Lee H-Y (2011) NSRRC activity report 2011, pp 46–47. National Synchrotron Radiation Research Center

  128. Ade H, Hitchcock AP (2008) NEXAFS microscopy and resonant scattering: composition and orientation probed in real and reciprocal space. Polymer 49:643–675

    Article  CAS  Google Scholar 

  129. Wang C, Araki T, Watts B, Harton S, Koga T, Basu S, Ade H (2007) Resonant soft X-ray reflectivity of organic thin films. J Vac Sci Technol A 25:575–586

    Article  CAS  Google Scholar 

  130. Yan HP, Swaraj S, Wang C, Hwang I, Greenham NC, Groves C, Ade H, McNeill CR (2010) Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices. Adv Funct Mater 20:4329–4337

    Article  CAS  Google Scholar 

  131. Ade H, Wang C, Garcia A, Yan H, Sohn KE, Hexemer A, Bazan GC, Nguyen TQ, Kramer EJ (2009) Characterization of multicomponent polymer trilayers with resonant soft X-ray reflectivity. J Polym Sci B 47:1291–1299

    Article  CAS  Google Scholar 

  132. Mezger M, Jerome B, Kortright JB, Valvidares M, Gullikson EM, Giglia A, Mahne N, Nannarone S (2011) Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity. Phys Rev B 83:155406

    Article  CAS  Google Scholar 

  133. Yan H, Collins BA, Gann E, Wang C, Ade H, McNeill CR (2012) Correlating the efficiency and nanomorphology of polymer blend solar cells utilizing resonant soft X-ray scattering. ACS Nano 6:677–688

    Article  CAS  Google Scholar 

  134. Swaraj S, Wang C, Yan HP, Watts B, Jan LN, McNeill CR, Ade H (2010) Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. Nano Lett 10:2863–2869

    Article  CAS  Google Scholar 

  135. Collins BA, Cochran JE, Yan H, Gann E, Hub C, Fink R, Wang C, Schuettfort T, McNeill CR, Chabinyc ML, Ade H (2012) Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nature Mater. doi:10.1038/nmat3310

  136. Swaraj S, Wang C, Araki T, Mitchell G, Liu L, Gaynor S, Deshmukh B, Yan H, McNeill CR, Ade H (2009) Eur Phys J Spec Top 167:121–126

    Article  Google Scholar 

  137. Hitchcock AP, Dynes JJ, Johansson G, Wang J, Botton G (2008) Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 39:741–748

    Article  CAS  Google Scholar 

  138. McNeill CR, Watts B, Swaraj S, Ade H, Thomsen L, Belcher W, Dastoor PC (2008) Evolution of the nanomorphology of photovoltaic polyfluorene blends: sub-100 nm resolution with X-ray spectromicroscopy. Nanotechnology 19:424015

    Article  CAS  Google Scholar 

  139. McNeill CR, Watts B, Thomsen L, Belcher WJ, Greenham NC, Dastoor PC, Ade H (2009) Evolution of laterally phase-separated polyfluorene blend morphology studied by X-ray spectromicroscopy. Macromolecules 42:3347–3352

    Article  CAS  Google Scholar 

  140. Chung J, Kim K-H, Lee JC, Kim MK, Shin HJ (2008) Spectromicroscopic investigation of polymer light-emitting device degradation. Org Electron 9:869–872

    Article  CAS  Google Scholar 

  141. Watts B, Ade H (2012) NEXAFS imaging of synthetic organic materials - review article. Mater Today 15:148–157

    Article  CAS  Google Scholar 

  142. Watts B, McNeill CR (2010) Simultaneous surface and bulk imaging of polymer blends with X-ray spectromicroscopy. Macromol Rapid Commun 31:1706–1712

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Seeber.

Additional information

Published in the topical collection Characterization of Thin Films and Membranes with guest editors Daniel Mandler and Pankaj Vadgama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzi, F., Pasquali, L. & Seeber, R. Studies of the interface of conducting polymers with inorganic surfaces. Anal Bioanal Chem 405, 1513–1535 (2013). https://doi.org/10.1007/s00216-012-6455-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6455-z

Keywords

Navigation