Skip to main content
Log in

Bubble cell for magnetic bead trapping in capillary electrophoresis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A bubble cell capillary classically used to extend the optical path length for UV–vis detection is employed here to trap magnetic beads. With this system, a large amount of beads can be captured without inducing a strong pressure drop, as it is the case with magnetic beads trapped in a standard capillary, thereby having less effect on the experimental conditions. Using numerical simulations and microscopic visualizations, the capture of beads inside a bubble cell was investigated with two magnet configurations. Pressure-driven and electro-osmotic flow velocities were measured for different amounts of protein-A-coated beads or C18-functionalized beads (RPC-18). Solid-phase extraction of a model antibody on protein-A beads and preconcentration of fluorescein on RPC-18 beads were performed as proof of concept experiments.

Isovalues of the magnetic induction produced by two permanent magnets in attraction configuration with a capillary placed between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Breadmore MC, Dawod M, Quirino JP (2011) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis 32(1):127–148

    Article  CAS  Google Scholar 

  2. Hempel G (2000) Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids. Electrophoresis 21(4):691–698

    Article  CAS  Google Scholar 

  3. Tempels FWA, Underberg WJM, Somsen GW, de Jong GJ (2008) Design and applications of coupled SPE-CE. Electrophoresis 29(1):108–128

    Article  CAS  Google Scholar 

  4. Saavedra L, Barbas C (2007) Chromatography-based on- and in-line pre-concentration methods in capillary electrophoresis. J Biochem Bioph Meth 70(2):289–297

    Article  CAS  Google Scholar 

  5. Puig P, Borrull F, Calull M, Aguilar C (2007) Recent advances in coupling solid-phase extraction and capillary electrophoresis (SPE-CE). Trac-Trend Anal Chem 26(7):664–678

    Article  CAS  Google Scholar 

  6. Ramautar R, Somsen GW, de Jong GJ (2010) Recent developments in coupled SPE-CE. Electrophoresis 31(1):44–54

    Article  CAS  Google Scholar 

  7. Guzman NA, Blanc T, Phillips TM (2008) Immunoaffinity capillary electrophoresis as a powerful strategy for the quantification of low-abundance biomarkers, drugs, and metabolites in biological matrices. Electrophoresis 29(16):3259–3278

    Article  CAS  Google Scholar 

  8. Augustin V, Proczek G, Dugay J, Descroix S, Hennion MC (2007) Online preconcentration using monoliths in electrochromatography capillary format and microchips. J Sep Sci 30(17):2858–2865

    Article  CAS  Google Scholar 

  9. Puig P, Borrull F, Calull M, Aguilar C (2008) Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications. Analytica Chimica Acta 616(1):1–18

    Article  CAS  Google Scholar 

  10. Peterson DS (2005) Solid supports for micro analytical systems. Lab Chip 5(2):132–139

    Article  CAS  Google Scholar 

  11. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  CAS  Google Scholar 

  12. Gijs MA, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  CAS  Google Scholar 

  13. Doyle PS, Bibette J, Bancaud A, Viovy JL (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295(5563):2237

    Article  CAS  Google Scholar 

  14. Kaneta T, Inoue J, Koizumi M, Imasaka T (2006) On-column capture of a specific protein in capillary electrophoresis using magnetic beads. Electrophoresis 27(16):3218–3223

    Article  CAS  Google Scholar 

  15. Jankovicova B, Rosnerova S, Slovakova M, Zverinova Z, Hubalek M, Hernychova L, Rehulka P, Viovy JL, Bilkova Z (2008) Epitope mapping of allergen ovalbumin using biofunctionalized magnetic beads packed in microfluidic channels. The first step towards epitope-based vaccines. J Chromatogr A 1206(1):64–71

    Article  CAS  Google Scholar 

  16. Okamoto Y, Kitagawa F, Otsuka K (2007) Online concentration and affinity separation of biomolecules using multifunctional particles in capillary electrophoresis under magnetic field. Anal Chem 79(8):3041–3047

    Article  CAS  Google Scholar 

  17. Tennico YH, Remcho VT (2010) In-line extraction employing functionalized magnetic particles for capillary and microchip electrophoresis. Electrophoresis 31(15):2548–2557

    Article  CAS  Google Scholar 

  18. Slovakova M, Minc N, Bilkova Z, Smadja C, Faigle W, Futterer C, Taverna M, Viovy JL (2005) Use of self assembled magnetic beads for on-chip protein digestion. Lab Chip 5(9):935–942

    Article  CAS  Google Scholar 

  19. Le Nel A, Minc N, Smadja C, Slovakova M, Bilkova Z, Peyrin JM, Viovy JL, Taverna M (2008) Controlled proteolysis of normal and pathological prion protein in a microfluidic chip. Lab Chip 8(2):294–301

    Article  Google Scholar 

  20. Rashkovetsky LG, Lyubarskaya YV, Foret F, Hughes DE, Karger BL (1997) Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation. J Chromatogr A 781(1–2):197–204

    Article  CAS  Google Scholar 

  21. Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73:5896–5902

    Article  CAS  Google Scholar 

  22. Chen HX, Busnel JM, Gassner AL, Peltre G, Zhang XX, Girault HH (2008) Capillary electrophoresis immunoassay using magnetic beads. Electrophoresis 29(16):3414–3421

    Article  CAS  Google Scholar 

  23. Chen HX, Busnel JM, Peltre G, Zhang XX, Girault HH (2008) Magnetic beads based immunoaffinity capillary electrophoresis of total serum IgE with laser-induced fluorescence detection. Anal Chem 80(24):9583–9588

    Article  CAS  Google Scholar 

  24. Lacharme F, Vandevyver C, Gijs MA (2008) Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal Chem 80(8):2905–2910

    Article  CAS  Google Scholar 

  25. Hahn YK, Jin Z, Kang JH, Oh E, Han MK, Kim HS, Jang JT, Lee JH, Cheon J, Kim SH, Park HS, Park JK (2007) Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient. Anal Chem 79(6):2214–2220

    Article  CAS  Google Scholar 

  26. Do J, Ahn CH (2008) A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. Lab on a Chip 8(4):542–549

    Article  CAS  Google Scholar 

  27. Gassner AL, Abonnenc M, Chen HX, Morandini J, Josserand J, Rossier JS, Busnel JM, Girault HH (2009) Magnetic forces produced by rectangular permanent magnets in static microsystems. Lab Chip 9(16):2356–2363

    Article  CAS  Google Scholar 

  28. Oleschuk RD, Shultz-Lockyear LL, Ning YB, Harrison DJ (2000) Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal Chem 72(3):585–590

    Article  CAS  Google Scholar 

  29. Strausbauch MA, Landers JP, Wettstein PJ (1996) Mechanism of peptide separations by solid phase extraction capillary electrophoresis at low pH. Anal Chem 68(2):306–314

    Article  CAS  Google Scholar 

  30. Lara FJ, Lynen F, Sandra P, Garcia-Campana AM, Ales-Barrero F (2008) Evaluation of a molecularly imprinted polymer as in-line concentrator in capillary electrophoresis. Electrophoresis 29(18):3834–3841

    Article  CAS  Google Scholar 

  31. Gassner AL, Morandini J, Josserand J, Girault HH (2011) Ring magnets for magnetic beads trapping in a capillary. Analytical Methods 3(3):614–621

    Article  CAS  Google Scholar 

  32. Hayes MA, Polson NA, Garcia AA (2001) Active control of dynamic supraparticle structures in microchannels. Langmuir 17(9):2866–2871

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Swiss National Science Foundation for financial support, grant entitled “Supramolecular phases for protein adsorption” (grant no. 404740-117321). The authors also thank the “Agilent Technologies Foundation” for a research award and Dr. Stéphanie Descroix for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert H. Girault.

Additional information

Anne-Laure Gassner and Gaëlle Proczek have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassner, AL., Proczek, G. & Girault, H.H. Bubble cell for magnetic bead trapping in capillary electrophoresis. Anal Bioanal Chem 401, 3239–3248 (2011). https://doi.org/10.1007/s00216-011-5417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5417-1

Keywords

Navigation