Skip to main content
Log in

Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Insulator-based dielectrophoresis (iDEP), an efficient technique with great potential for miniaturization, has been successfully applied for the manipulation of a wide variety of bioparticles. When iDEP is applied employing direct current (DC) electric fields, other electrokinetic transport mechanisms are present: electrophoresis and electroosmotic flow. In order to concentrate particles, iDEP has to overcome electrokinetics. This study presents the characterization of electrokinetic flow under the operating conditions employed with iDEP; in order to identify the optimal conditions for particle concentration employing DC-iDEP, microparticle image velocimetry (μPIV) was employed to measure the velocity of 1-μm-diameter inert polystyrene particles suspended inside a microchannel made from glass. Experiments were carried out by varying the properties of the suspending medium (conductivity from 25 to 100 μS/cm and pH from 6 to 9) and the strength of the applied electric field (50–300 V/cm); the velocities values obtained ranged from 100 to 700 μm/s. These showed that higher conductivity and lower pH values for the suspending medium produced the lowest electrokinetic flow, improving iDEP concentration of particles, which decreases voltage requirements. These ideal conditions for iDEP trapping (pH = 6 and σ m = 100 μS/cm) were tested experimentally and with the aid of mathematical modeling. The μPIV measurements allowed obtaining values for the electrokinetic mobilities of the particles and the zeta potential of the glass surface; these values were used with a mathematical model built with COMSOL Multiphysics software in order to predict the dielectrophoretic and electrokinetic forces exerted on the particles; the modeling results confirmed the μPIV findings. Experiments with iDEP were carried out employing the same microparticles and a glass microchannel that contained an array of cylindrical insulating structures. By applying DC electric fields across the insulating structures array, it was seen that the dielectrophoretic trapping was improved when the electrokinetic force was the lowest; as predicted by μPIV measurements and the mathematical model. The results of this study provide guidelines for the selection of optimal operating conditions for improving insulator-based dielectrophoretic separations and have the potential to be extended to bioparticle applications.

Comparison of experimental measurements and mathematical modeling of electrokinetic and dielectrophoretic effects on microparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Alternating current

DEP:

Dielectrophoresis

DC:

Direct current

EOF:

Electroosmotic flow

EP:

Electrophoresis

EK:

Electrokinetic

PIV:

Particle imaging velocimetry

References

  1. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  2. Rheea M, Burns MA (2008) Lab Chip 8:1365–1373

    Article  Google Scholar 

  3. Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3907

    Article  CAS  Google Scholar 

  4. Andersson H, van den Berg A (2003) Sens Actuator B-Chem 92:315–325

    Article  Google Scholar 

  5. Escarpa A, González MC, López-Gil MA, Crevillén AG, Hervás M, García M (2008) Electrophoresis 29:4852–4861

    Article  CAS  Google Scholar 

  6. Chung TD, Kim HC (2007) Electrophoresis 28:4511–4520

    Article  CAS  Google Scholar 

  7. Hughes MP (2002) Nanoelectromechanics in engineering and biology. CRC, Boca Raton, FL

    Google Scholar 

  8. Castellanos A, Ramos A, González A, Green NG, Morgan H (2003) J Phys D: Appl Phys 36:2584–2597

    Article  CAS  Google Scholar 

  9. Chou CF, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Biophys J 83:2170–2179

    Article  CAS  Google Scholar 

  10. Chou CF, Zenhausern F (2003) IEEE Eng Med Biol Mag 22:62–67

    Article  Google Scholar 

  11. Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos R (2008) Biomed Microdev 10:661–670

    Article  CAS  Google Scholar 

  12. Cummings EB, Singh AK (2003) Anal Chem 75:4724–4731

    Article  CAS  Google Scholar 

  13. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Anal Chem 76:1571–1579

    Article  CAS  Google Scholar 

  14. Davalos RV, McGraw GJ, Wallow TI, Morales AM, Krafcik KL, Cummings EB, Simmons BA (2008) Anal Bioanal Chem 390:847–855

    Article  CAS  Google Scholar 

  15. Simmons BA, McGraw GJ, Davalos RV, Fiechtner GJ, Fintschenko Y, Cummings EB (2006) MRS Bull 31:120–124

    CAS  Google Scholar 

  16. Kwon J-S, Maeng J-S, Chun M-S, Song S (2008) Microfluid Nanofluid 5:23–31

    Article  CAS  Google Scholar 

  17. Pysher MD, Hayes MA (2007) Anal Chem 79:4552–4557

    Article  CAS  Google Scholar 

  18. Jones TB (1995) Electromechanics of particles. Cambridge University Press, USA

    Google Scholar 

  19. Pohl HA (1951) J Appl Phys 22:869–871

    Article  CAS  Google Scholar 

  20. Markx GH, Dyda PA, Pethig R (1996) J Biotechnol 51:175–180

    Article  CAS  Google Scholar 

  21. Ozuna-Chacón S, Lapizco-Encinas BH, Rito-Palomares M, Martínez-Chapa SO, Reyes-Betanzo C (2008) Electrophoresis 29:3115–3122

    Article  Google Scholar 

  22. Hawkins BG, Smith AE, Syed YA, Kirby BJ (2007) Anal Chem 79:7291–7300

    Article  CAS  Google Scholar 

  23. Johnson AM, Sadoway DR, Cima M, Langera R (2005) J Electrochem Soc 152:H6–H11

    Article  CAS  Google Scholar 

  24. Green NG, Morgan H (1999) J Phys Chem B 103:41–50

    Article  CAS  Google Scholar 

  25. Sabounchi P, Huber DE, Kanouff MP, Harris AE, Simmons BA (2008) The 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2008), San Diego CA, October 12–16, 2008

  26. Hayes MA, Ketherpal I, Ewing AG (1993) Anal Chem 65:27–31

    Article  CAS  Google Scholar 

  27. Kirby BJ, Hasselbrink EF (2004) Electrophoresis 25:187–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the grant CONACYT-CB-2006-53603. The authors are grateful for the financial support provided by Cátedras de Investigación (CAT142 and CAT161) of Tecnológico de Monterrey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca H. Lapizco-Encinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-López, J.I., Moncada-Hernández, H., Baylon-Cardiel, J.L. et al. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Anal Bioanal Chem 394, 293–302 (2009). https://doi.org/10.1007/s00216-009-2626-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2626-y

Keywords

Navigation