Skip to main content
Log in

Modelling vibrational coupling in DNA oligomers: a computational strategy combining QM and continuum solvation models

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper, a computational strategy, based on DFT calculations at the M06-2X level, combined with the polarizable continuum model, the Hessian matrix reconstruction method and the Partial hessian vibrational approach is applied to evaluate inter- and intra-layer vibrational couplings between hydrogen bonded and stacked DNA base pairs. The present work demonstrates that this computational scheme can effectively predict and interpret the vibrational couplings of nucleic acids in solution. The effect of the environment described in a cluster or in a continuum manner is necessary in order to improve the agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cho M (2008) Chem Rev 108:1331

    Article  CAS  Google Scholar 

  2. Kim YS, Hochstrasser RM (2009) J Phys Chem B 113:8231

    Article  CAS  Google Scholar 

  3. Jeon J, Yang S, Choi JH, Cho M (2009) Acc Chem Res 42:1280

    Article  CAS  Google Scholar 

  4. Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A (2008) Acc Chem Res 41:432

    Article  CAS  Google Scholar 

  5. Jansen TIC, Knoester J (2009) Acc Chem Res 42:1405

    Article  CAS  Google Scholar 

  6. Krummel AT, Mukherjee P, Zanni MT (2003) J Phys Chem B 107:9165

    Article  CAS  Google Scholar 

  7. Krummel AT, Zanni MT (2006) J Phys Chem B 110:13991

    Article  CAS  Google Scholar 

  8. Yang M, Szyc Y, Rottger K, Fidder H, Nibbering ETJ, Elsaesser T, Temps F (2011) J Phys Chem B 115:5484

    Article  CAS  Google Scholar 

  9. Yang M, Szyc Y, Elsaesser T (2011) J Phys Chem B 115:1262

    Article  CAS  Google Scholar 

  10. Szyc L, Yang M, Nibbering ETJ, Elsaesser T (2010) Angew Chem Int Ed 49:3598

    Article  CAS  Google Scholar 

  11. Mennucci B, Cammi R, Tomasi J (1999) J Chem Phys 110:6858

    Article  CAS  Google Scholar 

  12. Krimm S, Abe Y (1972) Proc Natl Acad Sci USA 69:2788

    Article  CAS  Google Scholar 

  13. Torii H, Tasumi M (1992) Chem Phys 96:3379

    CAS  Google Scholar 

  14. Torii H, Tasumi M (1996) In: Mantsch HH, Chapman D (eds) Infrared spectroscopy of biomolecules. Wiley, New York

    Google Scholar 

  15. Gorbunov RD, Kosov DS, Stock G (2005) J Chem Phys 122:224904

    Article  Google Scholar 

  16. Hamm P, Wouterson S (2002) Bull Chem Soc Jpn 75:985

    Article  CAS  Google Scholar 

  17. Ham S, Cha S, Choi JH, Cho M (2003) J Chem Phys 119:1451

    Article  CAS  Google Scholar 

  18. Hahn S, Ham S, Cho M (2005) J Phys Chem B 109:11789

    Article  CAS  Google Scholar 

  19. Biancardi A, Cappelli C, Mennucci B, Cammi R (2010) J Phys Chem B 114:4924

    Article  CAS  Google Scholar 

  20. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  21. Taillandier E, Liquier J (1992) In: Lilley HJ, Dahlberg JJ (eds) Methods in enzymology. Academic Press, New York

  22. Banyay M, Sarkar M, Gräslund A (2003) Biophys Chem 104:477

    Article  CAS  Google Scholar 

  23. Hunt NeilT (2009) Chem Soc Rev 38:1837

    Article  CAS  Google Scholar 

  24. Richards AD, Rodger A (2007) Chem Soc Rev 36:471

    Article  CAS  Google Scholar 

  25. Biancardi A, Biver T, Marini A, Mennucci B, Secco F (2011) Phys Chem Chem Phys 13:12595

    Article  CAS  Google Scholar 

  26. Lee C, Park K, Cho M (2006) J Chem Phys 125:114508

    Article  Google Scholar 

  27. Lee C, Park K, Cho M (2006) J Chem Phys 125:114509

    Article  Google Scholar 

  28. Lee C, Park K, Cho M (2006) J Chem Phys 125:114510

    Article  Google Scholar 

  29. Lee C, Park K, Cho M (2007) J Chem Phys 126:145102

    Article  Google Scholar 

  30. Moran A, Mukamel S (2004) Proc Natl Acad Sci USA 101:506

    Article  CAS  Google Scholar 

  31. Besley NA, Metcalf KA (2007) J Chem Phys 126:035101

    Article  Google Scholar 

  32. Besley NA, Bryan JA (2008) J Phys Chem C 112:4308

    Article  CAS  Google Scholar 

  33. Jin S, Head JD (1994) Surf Sci 318:204

    Article  CAS  Google Scholar 

  34. Calvin MD, Head JD, Jin S (1996) Surf Sci 345:161

    Article  CAS  Google Scholar 

  35. Head JD (1997) Int J Quantum Chem 65:827

    Article  CAS  Google Scholar 

  36. Head JD, Shi Y (1999) Int J Quantum Chem 75:815

    Article  CAS  Google Scholar 

  37. Head JD (2000) Int J Quantum Chem 77:350

    Article  CAS  Google Scholar 

  38. McCall M, Brown T, Kennard O (1985) J Mol Biol 183:385

    Article  CAS  Google Scholar 

  39. Ghysels A, Van Speybroeck V, Verstraelen T, Van Neck D, Waroquier M (2008) J Chem Theory Comput 4:614

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01, Gaussian, Inc., Wallingford

  41. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  42. Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theory Comput 4:1996

    Article  CAS  Google Scholar 

  43. Rutledge LR, Wetmore SD (2010) Can J Chem 88:815

    Article  CAS  Google Scholar 

  44. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  45. Watson JD, Crick FH (1953) Nature 171:737

    Article  CAS  Google Scholar 

  46. Santamaria R, Charro E, Zacarías A, Castro M (1999) J Comput Chem 20:511

    Article  CAS  Google Scholar 

  47. Chandra AK, Nguyen MT, Uchimaru T, Zeegers-Huyskens T (1999) J Phys Chem A 103:8853

    Article  CAS  Google Scholar 

  48. Pelmenschikov A, Hovorun DM, Shishkin OV, Leszczynski J (2000) J Chem Phys 113:5986

    Article  CAS  Google Scholar 

  49. Ha TK, Gunthard HH (2001) Spectrochim Acta Part A 57:55

    Article  CAS  Google Scholar 

  50. Kwiatkowski JS, Leszczynski J (1996) J Phys Chem 100:941

    Article  CAS  Google Scholar 

  51. Szczepaniak K, Szczesniak M (1987) J Mol Struct 156:29

    Google Scholar 

  52. Szczesniak M, Szczepaniak K, Kwiatkowski JS, KuBulat K, Person WB (1988) J Am Chem Soc 110:8319

    Article  CAS  Google Scholar 

  53. Nowak MJ, Lapinski L, Fulara J (1989) Spectrochim Acta Part A 45:229

    Article  Google Scholar 

  54. Tena GN, Baranov VI (2005) J Appl Spectr 72:155

    Article  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03. Gaussian, Inc., Wallingford

    Google Scholar 

  56. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2872

    Article  CAS  Google Scholar 

  57. Scholes GD, Curutchet C, Mennucci B, Cammi R, Tomasi J (2007) J Phys Chem B 111:6978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Tomasi.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biancardi, A., Cammi, R., Cappelli, C. et al. Modelling vibrational coupling in DNA oligomers: a computational strategy combining QM and continuum solvation models. Theor Chem Acc 131, 1157 (2012). https://doi.org/10.1007/s00214-012-1157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1157-3

Keywords

Navigation