Skip to main content
Log in

Theoretical modeling of spectroscopic properties of molecules in solution: toward an effective dynamical discrete/continuum approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we present an effective and flexible computational approach, which is the result of an on-going development conducted in our group, for simulating complex solute–solvent systems and computing relevant spectroscopic observables. Such an approach is based on QM/MM molecular dynamics techniques using non-periodic conductor boundary conditions and localized basis sets, combined with a posteriori high-level quantum mechanical methods for the calculation of spectroscopic parameters. As illustrative applications, we report structural and spectroscopic analyses of acetone, acrolein and glycine radical in aqueous solutions, where solvent effects on the NMR chemical shifts, UV absorption spectrum and EPR hyperfine coupling constants, respectively, are investigated and favorably compared to experimental measurements. In particular, it will be shown the importance of including dynamical effects in order to reproduce experimental data accurately. Moreover, we present an infrared analysis of formamide in both gas phase and acetonitrile from first-principle molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomasi J, Persico M (1994). Chem Rev 94:2027

    Article  CAS  Google Scholar 

  2. Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161

    Article  CAS  Google Scholar 

  3. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999

    Article  CAS  Google Scholar 

  4. Brancato G, Nola AD, Barone V, Amadei A (2005). J Chem Phys 122:154109

    Article  Google Scholar 

  5. Brancato G, Rega N, Barone V (2006). J Chem Phys 124:214505

    Article  Google Scholar 

  6. Rega N, Brancato G, Barone V (2006). Chem Phys Lett 422:367

    Article  CAS  Google Scholar 

  7. Bolton K, Hase WL, Peslherbe GH (1998). Modern methods for multidimensional dynamics computation in chemistry. In: Direct dynamics of reactive systems. World Scientific, Singapore, p. 143

  8. Millam JM, Bakken V, Chen W, Hase WL, Schlegel HB (1999). J Chem Phys 111:3800

    Article  CAS  Google Scholar 

  9. Marx D, Hutter J (2000). Modern methods and algorithms of quantum chemistry. Ab initio molecular dynamics: theory and implementation vol 1. John vonNeumann Institute for Computing, Julich p 301

  10. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001). J Chem Phys 114: 9758

    Article  CAS  Google Scholar 

  11. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001). J Chem Phys 115:10291

    Article  CAS  Google Scholar 

  12. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002). J Chem Phys 117:8694

    Article  CAS  Google Scholar 

  13. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  14. Ben-Naim A (1987) Solvation thermodynamics. Plenum Press, New York

    Google Scholar 

  15. Orozco M, Luque FJ (2000). Chem Rev 100:4187

    Article  CAS  Google Scholar 

  16. Roux B, Simonson T (1999). Biophys Chemi 78:1

    Article  CAS  Google Scholar 

  17. Pascual-Ahuir JL, Silla E, Tũnon I (1994). J Comput Chem 15:1127

    Article  CAS  Google Scholar 

  18. Scalmani G, Rega N, Cossi M, Barone V (2002). J Comput Meth Sci Eng 2:469

    CAS  Google Scholar 

  19. Pierotti RA (1976). Chem Rev 76:717

    Article  CAS  Google Scholar 

  20. Claverie P (1978). Intermolecular interactions: from diatomics to biomolecules. In: Pullman B (ed). Wiley, Chichester

  21. Benzi C, Cossi M, Improta R, Barone V (2005). J Comput Chem 26:1096

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB et al (2003). Gaussian 03, revision c.02. Gaussian, Inc.

  23. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  24. Warwicker J, Watson HC (1982). J Mol Biol 157:671

    Article  CAS  Google Scholar 

  25. Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986). Proteins 1:47

    Article  CAS  Google Scholar 

  26. Miertuš S, Scrocco E, Tomasi J (1981). Chem Phys 55:117

    Article  Google Scholar 

  27. Zauhar R, Morgan R (1985). J Mol Biol 186:815

    Article  CAS  Google Scholar 

  28. Shaw P (1985). Phys Rev A 32:2476

    Article  CAS  Google Scholar 

  29. Vorobjev YN, Scheraga HA (1997). J Comp Chem 18:569

    Article  CAS  Google Scholar 

  30. Benzi C, Cossi M, Barone V, Tarroni R, Zannoni C (2005). J Phys Chem B 109:2584

    Article  CAS  Google Scholar 

  31. Mennucci B, Tomasi J (1997). J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  32. Chipman DM (1996). J Chem Phys 104:3276

    Article  CAS  Google Scholar 

  33. Chipman DM (1997). J Chem Phys 106:10194

    Article  CAS  Google Scholar 

  34. Zhan C-G, Chipman DM (1999). J Chem Phys 110:1611

    Article  CAS  Google Scholar 

  35. Chipman DM (1999). J Chem Phys 110:8012

    Article  CAS  Google Scholar 

  36. Chipman DM (2000). J Chem Phys 112:5558

    Article  CAS  Google Scholar 

  37. Cossi M, Rega N, Scalmani G, Barone V (2001). J Chem Phys 114:5691

    Article  CAS  Google Scholar 

  38. Klamt A, Schüurmann G (1993). J Chem Soc Perkin 2 Trans :799

  39. Barone V, Cossi M (1998). J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  40. Cossi M, Rega N, Scalmani G, Barone V (2003). J Comp Chem 24:669

    Article  CAS  Google Scholar 

  41. Cossi M, Scalmani G, Rega N, Barone V (2002). J Chem Phys 117:43

    Article  CAS  Google Scholar 

  42. Floris FM, Tomasi J (1986). J Comput Chem 10:616

    Article  Google Scholar 

  43. Floris FM, Tomasi J, Pascual-Ahuir JL (1991). J Comput Chem 12:784

    Article  CAS  Google Scholar 

  44. Benzi C, Crescenzi O, Pavone M, Barone V (2004). Magn Reson Chem 42:S57

    Article  CAS  Google Scholar 

  45. Gustavsson T, Banyasz A, Lazzarotto E, Markovitsi D, Scalmani G, Frisch MJ, Barone V, Improta R (2006). J Am Chem Soc 128:607

    Article  CAS  Google Scholar 

  46. Barone V, Improta R (2004). Chem Rev 104:1231

    Article  Google Scholar 

  47. Pavone M, Cimino P, De Angelis F, Barone V (2006). J Am Chem Soc 128:4338

    Article  CAS  Google Scholar 

  48. Brancato G, Rega N, Barone V (2006). J Chem Phys 125:164515

    Article  Google Scholar 

  49. Pavone M, Brancato G, Morelli G, Barone V (2006). Chem Phys Chem 7:148

    CAS  Google Scholar 

  50. Cossi M, Crescenzi O (2003). J Chem Phys 118:8863

    Article  CAS  Google Scholar 

  51. Improta R, Barone V, Kudin KN, Scuseria GE (2002). J Am Chem Soc 124:113

    Article  CAS  Google Scholar 

  52. Doltsinis NL, Sprik M (2000). Chem Phys Lett 330:563

    Article  CAS  Google Scholar 

  53. Car R, Parrinello M (1985). Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  54. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994). J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  55. Freindorf M, Shao Y, Furlani TR, Kong J (2005). J Comput Chem 26:1270

    Article  CAS  Google Scholar 

  56. Jameson CJ (1996). Ann Rev Phys Chem 47:135

    Article  CAS  Google Scholar 

  57. Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY (2001). Prog Nucl Magn Reson Spectrosc 38:197

    Article  CAS  Google Scholar 

  58. Helgaker T, Jaszunski M, Ruud K (1999). Chem Rev 99:293

    Article  CAS  Google Scholar 

  59. Wolinski K, Hilton JF, Pulay P (1990). J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  60. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996). J Chem Phys 104:5497

    Article  CAS  Google Scholar 

  61. Bayliss NS, McRae EG (1954). J Phys Chem 58:1006

    Article  CAS  Google Scholar 

  62. Balasubramanian A, Rao CNR (1962). Spectrochim Acta 18:1337

    Google Scholar 

  63. Bayliss NS, Wills-Johnson G (1968). Spectrochim ActaA 24:551

    Article  CAS  Google Scholar 

  64. Blair JT, Krogh-Jespersen K, Levy RM (1989). J Am Chem Soc 111:6948

    Article  CAS  Google Scholar 

  65. Kongsted J, Osted A, Pedersen TB, Mikkelsen KV, Christiansen O (2004). J Phys Chem A 108:8624

    Article  CAS  Google Scholar 

  66. Bayliss NS, McRae EG (1954). J Phys Chem 58:1002

    Article  CAS  Google Scholar 

  67. Crescenzi O, Pavone M, De Angelis F, Barone V (2005). J Phys Chem B 109:445

    Article  CAS  Google Scholar 

  68. Buswell AM, Dunlop EC, Rodebush WH, Swartz JB (1940). J Am Chem Soc 62:325

    Article  CAS  Google Scholar 

  69. Walsh AD (1945). Trans Faraday Soc 41:498

    Article  CAS  Google Scholar 

  70. Mackinney G, Temmer O (1948). J Am Chem Soc 70:3586

    Article  CAS  Google Scholar 

  71. Inuzuka K (1961). Bull Chem Soc Jpn 34:6

    Article  CAS  Google Scholar 

  72. Becker RS, Inuzuka K, King J (1970). J Chem Phys 52:5164

    Article  CAS  Google Scholar 

  73. Bair EJ, Goietz W, Ramsay DA (1971). Can J Chem 49:2710

    CAS  Google Scholar 

  74. Osborne GA, Ramsay DA (1973). Can J Chem 51:1170

    CAS  Google Scholar 

  75. Luthy A (1923). Z Phys Chem 107:284

    Google Scholar 

  76. Blacet FE, Young WG, Roof JG (1937). J Am Chem Soc 59:608

    Article  CAS  Google Scholar 

  77. Inuzuka K (1960). Bull Chem Soc Jpn 33:678

    Article  CAS  Google Scholar 

  78. von Paul H, Fisher H (1971). Helv Chim Acta 54:485

    Article  Google Scholar 

  79. Neta P, Fessenden RW (1971). J Phys Chem 75:738

    Article  Google Scholar 

  80. Ghosh DK, Wiffen DH (1960). J Chem Soc :1869

  81. Rega N, Cossi M, Barone V (1997). J Am Chem Soc 119:12962

    Article  CAS  Google Scholar 

  82. Barone V (2004). J Phys Chem A 108:4146

    Article  CAS  Google Scholar 

  83. Barone V (2005). J Chem Phys 122:014108

    Article  Google Scholar 

  84. Wong MW, Wiberg KB, Frisch MJ (1991). J Chem Phys 95:8991

    Article  CAS  Google Scholar 

  85. Ramirez R, Lopez-Ciudad T, Kumar P, Marx D (2004). J Chem Phys 121:3973

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Rega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brancato, G., Barone, V. & Rega, N. Theoretical modeling of spectroscopic properties of molecules in solution: toward an effective dynamical discrete/continuum approach. Theor Chem Account 117, 1001–1015 (2007). https://doi.org/10.1007/s00214-006-0216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0216-z

Keywords

Navigation