Skip to main content
Log in

Comparison of the D1 dopamine full agonists, dihydrexidine and doxanthrine, in the 6-OHDA rat model of Parkinson's disease

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Preclinical evidence indicates that D1 dopamine receptor full agonists have potential as therapeutic agents for a variety of neurological conditions. Dihydrexidine (DHX) was the first high potency selective D1 dopamine receptor full agonist and has been studied as a possible treatment for Parkinson's disease (PD). Recently, we discovered doxanthrine (DOX), an oxygen bioisostere of DHX that has even greater selectivity for the D1 dopamine receptor.

Objectives

Using the unilateral 6-hydroxydopamine-lesioned rat model of PD, DOX and DHX were compared at several doses (0.625, 1.25, 2.5, or 5.0 mg/kg) for their ability to elicit contralateral rotation by either intraperitoneal injection or oral gavage.

Results

After intraperitoneal administration, both DOX and DHX showed robust contralateral rotation at doses of 2.5 and 5.0 mg/kg compared to vehicle. In addition, after intraperitoneal administration at doses of 2.5 and 5.0 mg/kg, DHX had a significantly longer duration of action than DOX (p < 0.05). Areas under the curves (AUC) for DOX and DHX were not significantly different, however, indicating that DOX and DHX have similar potency after intraperitoneal administration. By contrast, after oral administration, 2.5 and 5.0 mg/kg of DOX produced significant contralateral rotations (p < 0.05), whereas DHX showed no significant activity after oral administration of any dose.

Conclusion

These results demonstrate that although DHX and DOX have similar activity after intraperitoneal administration, DOX demonstrated greater activity after oral administration compared to DHX. Despite its catechol functionality, DOX may possess sufficient oral availability for development as a human therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asin KE, Wirtshafter D (1993) Effects of repeated dopamine D1 receptor stimulation on rotation and c-fos expression. Eur J Pharmacol 235:167–168

    Article  PubMed  CAS  Google Scholar 

  • Bonuccelli U, Pavese N (2006) Dopamine agonists in the treatment of Parkinson's disease. Expert Rev Neurother 6:81–89

    Article  PubMed  CAS  Google Scholar 

  • Braun A, Fabbrini G, Mouradian MM, Serrati C, Barone P, Chase TN (1987) Selective D-1 dopamine receptor agonist treatment of Parkinson's disease. J Neural Transm 68:41–50

    Article  PubMed  CAS  Google Scholar 

  • Brewster WK, Nichols DE, Riggs RM, Mottola DM, Lovenberg TW, Lewis MH, Mailman RB (1990) Trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist. J Med Chem 33:1756–1764

    Article  PubMed  CAS  Google Scholar 

  • Chopin P, Colpaert FC, Marien M (1999) Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. J Pharmacol Exp Ther 288:798–804

    PubMed  CAS  Google Scholar 

  • Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE (2006) trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist. J Med Chem 49:6848–6857

    Article  PubMed  CAS  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K (2004) Levodopa and the progression of Parkinson's disease. N Engl J Med 351:2498–2508

    Article  PubMed  CAS  Google Scholar 

  • Foltynie T, Brayne C, Barker RA (2002) The heterogeneity of idiopathic Parkinson's disease. J Neurol 249:138–145

    Article  PubMed  Google Scholar 

  • Gottwald MD, Aminoff MJ (2011) Therapies for dopaminergic-induced dyskinesias in Parkinson disease. Ann Neurol 69:919–927

    Article  PubMed  CAS  Google Scholar 

  • Hickey P, Stacy M (2011) Available and emerging treatments for Parkinson's disease: a review. Drug Des Devel Ther 5:241–254

    PubMed  Google Scholar 

  • Jenner P (2008) Functional models of Parkinson's disease: a valuable tool in the development of novel therapies. Ann Neurol 64(Suppl 2):S16–S29

    PubMed  CAS  Google Scholar 

  • Johnson BJ, Peacock V, Schneider JS (1995) Dihydrexidine, a full D1 dopamine receptor agonist, induces rotational asymmetry in hemiparkinsonian monkeys. Pharmacol Biochem Behav 51:617–622

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77636: a potent and selective dopamine D1 receptor agonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    Article  PubMed  CAS  Google Scholar 

  • Lahti RA, Roberts RC, Tamminga CA (1995) D2-family receptor distribution in human postmortem tissue: an autoradiographic study. Neuroreport 6:2505–2512

    Article  PubMed  CAS  Google Scholar 

  • Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM (2003) Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23:6351–6356

    PubMed  CAS  Google Scholar 

  • Lin CW, Bianchi BR, Miller TR, Stashko MA, Wang SS, Curzon P, Bednarz L, Asin KE, Britton DR (1996) Persistent activation of the dopamine D1 receptor contributes to prolonged receptor desensitization: studies with A-77636. J Pharmacol Exp Ther 276:1022–1029

    PubMed  CAS  Google Scholar 

  • Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson's disease research. Nat Rev Drug Discov 10:377–393

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Perez-Lloret S, Rascol O (2010) Dopamine receptor agonists for the treatment of early or advanced Parkinson's disease. CNS Drugs 24:941–968

    Article  PubMed  CAS  Google Scholar 

  • Przybyla JA, Cueva JP, Chemel BR, Hsu KJ, Riese DJ, McCorvy JD, Chester JA, Nichols DE, Watts VJ (2009) Comparison of the enantiomers of (+/−)-doxanthrine, a high efficacy full dopamine D(1) receptor agonist, and a reversal of enantioselectivity at D(1) versus alpha(2C) adrenergic receptors. Eur Neuropsychopharmacol 19:138–146

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen M, Jakala P, Kejonen K, Riekkinen P Jr (1999) The alpha2 agonist, clonidine, improves spatial working performance in Parkinson's disease. Neuroscience 92:983–989

    Article  PubMed  CAS  Google Scholar 

  • Robin M, Forler C, Palfreyman MG (1985) Effect of chronic apomorphine on the development of denervation supersensitivity. Pharmacol Biochem Behav 22:547–551

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol 8:1128–1139

    Article  PubMed  CAS  Google Scholar 

  • Silver D (2006) Impact of functional age on the use of dopamine agonists in patients with Parkinson disease. Neurologist 12:214–223

    Article  PubMed  Google Scholar 

  • Taylor JR, Lawrence MS, Redmond DE Jr, Elsworth JD, Roth RH, Nichols DE, Mailman RB (1991) Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys. Eur J Pharmacol 199:389–391

    Article  PubMed  CAS  Google Scholar 

  • Tompson D, Oliver-Willwong R (2009) Pharmacokinetic and pharmacodynamic comparison of ropinirole 24-hour prolonged release and ropinirole immediate release in patients with Parkinson's disease. Clin Neuropharmacol 32:140–148

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1976) 6-Hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther B 2:37–40

    PubMed  CAS  Google Scholar 

  • Wooten GF (1997) Functional anatomical and behavioral consequences of dopamine receptor stimulation. Ann N Y Acad Sci 835:153–156

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Yoshida N, Hosoki K (1996) Involvement of dopamine D3 receptors in the area postrema in R(+)-7-OH-DPAT-induced emesis in the ferret. Eur J Pharmacol 301:143–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a TRASK award from the Purdue Research Foundation and by the Robert C. and Charlotte P. Anderson endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Nichols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCorvy, J.D., Watts, V.J. & Nichols, D.E. Comparison of the D1 dopamine full agonists, dihydrexidine and doxanthrine, in the 6-OHDA rat model of Parkinson's disease. Psychopharmacology 222, 81–87 (2012). https://doi.org/10.1007/s00213-011-2625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2625-5

Keywords

Navigation