Skip to main content
Log in

A lack of association between severity of nicotine withdrawal and individual differences in compensatory nicotine self-administration in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Compensatory smoking may represent an adverse consequence of smoking reduction or the use of reduced-nicotine tobacco products. Factors contributing to individual variability in compensation are poorly understood.

Objective

The objective of this study was to examine whether severity of nicotine withdrawal as measured by elevated intracranial self-stimulation (ICSS) thresholds is related to individual differences in compensatory nicotine self-administration (NSA) following unit dose reduction.

Methods

Rats were trained for ICSS and NSA (0.06 mg/kg per infusion). After stabilization, effects of reducing the nicotine unit dose to 0.03 mg/kg per infusion were examined. Following reacquisition of NSA (0.06 mg/kg per infusion), effects of antagonist-precipitated withdrawal and saline extinction (spontaneous withdrawal) were examined.

Results

Reducing the NSA unit dose produced partial compensation as indicated by the increased infusion rates, but a 35% mean decrease in daily nicotine intake. The magnitude of compensation varied considerably among rats. Dose reduction did not elicit withdrawal in rats as a group, although there were substantial increases in ICSS thresholds in some animals. Intracranial self-stimulation thresholds were consistently elevated during precipitated and spontaneous withdrawal, confirming that rats were nicotine-dependent. Individual differences in compensation were not correlated with changes in ICSS thresholds during dose reduction, precipitated withdrawal, or spontaneous withdrawal. In a secondary analysis, greater precipitated withdrawal severity predicted greater initial nicotine seeking during extinction.

Conclusions

Severity of nicotine withdrawal was not related to the degree of compensation in this protocol. These data do not support a role for nicotine withdrawal in individual differences in compensation during reduced nicotine exposure, but do suggest that withdrawal may contribute to nicotine seeking during early abstinence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5:625–626

    PubMed  CAS  Google Scholar 

  • Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL (2008) Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 83:531–541

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL, Dains KM, Hall SM, Stewart S, Wilson M, Dempsey D, Jacob P 3rd (2009) Progressive commercial cigarette yield reduction: biochemical exposure and behavioral assessment. Cancer Epidemiol Biomark Prev 18:876–883

    Article  CAS  Google Scholar 

  • Benowitz NL, Hall SM, Stewart S, Wilson M, Dempsey D, Jacob P 3rd (2007) Nicotine and carcinogen exposure with smoking of progressively reduced nicotine content cigarette. Cancer Epidemiol Biomark Prev 16:2479–2485

    Article  CAS  Google Scholar 

  • Benowitz NL, Henningfield JE (1994) Establishing a nicotine threshold for addiction. The implications for tobacco regulation. N Engl J Med 331:123–125

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL, Jacob P 3rd, Bernert JT, Wilson M, Wang L, Allen F, Dempsey D (2005) Carcinogen exposure during short-term switching from regular to “light” cigarettes. Cancer Epidemiol Biomark Prev 14:1376–1383

    Article  CAS  Google Scholar 

  • Benowitz NL, Jacob P 3rd, Herrera B (2006) Nicotine intake and dose response when smoking reduced-nicotine content cigarettes. Clin Pharmacol Ther 80:703–714

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL, Jacob P 3rd, Kozlowski LT, Yu L (1986) Influence of smoking fewer cigarettes on exposure to tar, nicotine, and carbon monoxide. N Engl J Med 315:1310–1313

    Article  PubMed  CAS  Google Scholar 

  • Britton J, Edwards R (2008) Tobacco smoking, harm reduction, and nicotine product regulation. Lancet 371:441–445

    Article  PubMed  Google Scholar 

  • Brower VG, Fu Y, Matta SG, Sharp BM (2002) Rat strain differences in nicotine self-administration using an unlimited access paradigm. Brain Res 930:12–20

    Article  PubMed  CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Palmatier MI, Liu X, Sved AF (2006) Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology 189:27–36

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Young RW, Velazquez MA, Groysman M, Noorbehesht K, Ben-Shahar OM, Ettenberg A (2009) Anxiolytic effects of nicotine in a rodent test of approach–avoidance conflict. Psychopharmacology 204:541–549

    Article  PubMed  CAS  Google Scholar 

  • Corrigall WA (1999) Nicotine self-administration in animals as a dependence model. Nicotine Tob Res 1:11–20

    Article  PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99:473–478

    Article  PubMed  CAS  Google Scholar 

  • DeNoble VJ, Mele PC (2006) Intravenous nicotine self-administration in rats: effects of mecamylamine, hexamethonium and naloxone. Psychopharmacology 184:266–272

    Article  PubMed  CAS  Google Scholar 

  • Donny EC, Caggiula AR, Knopf S, Brown C (1995) Nicotine self-administration in rats. Psychopharmacology 122:390–394

    Article  PubMed  CAS  Google Scholar 

  • Donny EC, Caggiula AR, Mielke MM, Booth S, Gharib MA, Hoffman A, Maldovan V, Shupenko C, McCallum SE (1999) Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology 147:135–142

    Article  PubMed  CAS  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    Article  PubMed  CAS  Google Scholar 

  • Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology 189:1–16

    Article  PubMed  CAS  Google Scholar 

  • Harris AC, Burroughs D, Pentel PR, LeSage MG (2008) Compensatory nicotine self-administration in rats during reduced access to nicotine: an animal model of smoking reduction. Exp Clin Psychopharmacol 16:86–97

    Article  PubMed  CAS  Google Scholar 

  • Harris AC, Mattson C, LeSage MG, Keyler DE, Pentel PR (2010) Comparison of the behavioral effects of cigarette smoke and pure nicotine in rats. Pharmacol Biochem Behav 96:217–227

    Article  PubMed  CAS  Google Scholar 

  • Harris AC, Pentel PR, LeSage MG (2007) Prevalence, magnitude, and correlates of an extinction burst in drug-seeking behavior in rats trained to self-administer nicotine during unlimited access (23 h/day) sessions. Psychopharmacology 194:395–402

    Article  PubMed  CAS  Google Scholar 

  • Harris AC, Pentel PR, LeSage MG (2009) Correlates of individual differences in compensatory nicotine self-administration in rats following a decrease in nicotine unit dose. Psychopharmacology 205:599–611

    Article  PubMed  CAS  Google Scholar 

  • Hatsukami DK, Henningfield JE, Kotlyar M (2004) Harm reduction approaches to reducing tobacco-related mortality. Ann Rev Public health 25:1–19

    Article  Google Scholar 

  • Hatsukami DK, Joseph AM, Lesage M, Jensen J, Murphy SE, Pentel PR, Kotlyar M, Borgida E, Le C, Hecht SS (2007) Developing the science base for reducing tobacco harm. Nicotine Tob Res 9(Suppl 4):S537–553

    Article  PubMed  Google Scholar 

  • Hatsukami DK, Kotlyar M, Hertsgaard LA, Zhang Y, Carmella SG, Jensen JA, Allen SS, Shields PG, Murphy SE, Stepanov I, Hecht SS (2010a) Reduced nicotine content cigarettes: effects on toxicant exposure, dependence and cessation. Addiction 105:343–355

    Article  PubMed  Google Scholar 

  • Hatsukami DK, Le CT, Zhang Y, Joseph AM, Mooney ME, Carmella SG, Hecht SS (2006) Toxicant exposure in cigarette reducers versus light smokers. Cancer Epidemiol Biomark Prev 15:2355–2358

    Article  CAS  Google Scholar 

  • Hatsukami DK, Perkins KA, Lesage MG, Ashley DL, Henningfield JE, Benowitz NL, Backinger CL, Zeller M (2010b) Nicotine reduction revisited: science and future directions. Tob Control 19:e1–10

    Article  PubMed  Google Scholar 

  • Hecht SS, Murphy SE, Carmella SG, Zimmerman CL, Losey L, Kramarczuk I, Roe MR, Puumala SS, Li YS, Le C, Jensen J, Hatsukami DK (2004) Effects of reduced cigarette smoking on the uptake of a tobacco-specific lung carcinogen. J Natl Cancer Inst 96:107–115

    Article  PubMed  CAS  Google Scholar 

  • Henningfield JE, Benowitz NL, Slade J, Houston TP, Davis RM, Deitchman SD (1998) Reducing the addictiveness of cigarettes. Council on Scientific Affairs, American Medical Association. Tob Control 7:281–293

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR (2007) Effects of abstinence from tobacco: etiology, animal models, epidemiology, and significance: a subjective review. Nicotine Tob Res 9:329–339

    Article  PubMed  Google Scholar 

  • Hughes JR, Carpenter MJ (2005) The feasibility of smoking reduction: an update. Addiction 100:1074–1089

    Article  PubMed  Google Scholar 

  • Joseph AM, Hecht SS, Murphy SE, Lando H, Carmella SG, Gross M, Bliss R, Le CT, Hatsukami DK (2008) Smoking reduction fails to improve clinical and biological markers of cardiac disease: a randomized controlled trial. Nicotine Tob Res 10:471–481

    Article  PubMed  Google Scholar 

  • Kenny PJ, Chartoff E, Roberto M, Carlezon WA Jr, Markou A (2009) NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 34:266–281

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26:5894–5900

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31:1203–1211

    PubMed  CAS  Google Scholar 

  • Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    PubMed  CAS  Google Scholar 

  • LeSage MG, Keyler DE, Collins G, Pentel PR (2003) Effects of continuous nicotine infusion on nicotine self-administration in rats: relationship between continuously infused and self-administered nicotine doses and serum concentrations. Psychopharmacology 170:278–286

    Article  PubMed  CAS  Google Scholar 

  • LeSage MG, Keyler DE, Shoeman D, Raphael D, Collins G, Pentel PR (2002) Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine. Pharmacol Biochem Behav 72:279–289

    Article  PubMed  CAS  Google Scholar 

  • Lynch WJ, Carroll ME (1999) Regulation of intravenously self-administered nicotine in rats. Exp Clin Psychopharmacol 7:198–207

    Article  PubMed  CAS  Google Scholar 

  • Malin DH (2001) Nicotine dependence: studies with a laboratory model. Pharmacol Biochem Behav 70:551–559

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    PubMed  CAS  Google Scholar 

  • Markou A, Koob GF (1992) Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol Behav 51:111–119

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Paterson NE (2001) The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine Tob Res 3:361–373

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology 112:163–182

    Article  PubMed  CAS  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 190:269–319

    Article  PubMed  CAS  Google Scholar 

  • O’Dell LE, Bruijnzeel AW, Smith RT, Parsons LH, Merves ML, Goldberger BA, Richardson HN, Koob GF, Markou A (2006) Diminished nicotine withdrawal in adolescent rats: implications for vulnerability to addiction. Psychopharmacology 186:612–619

    Article  PubMed  Google Scholar 

  • O’Dell LE, Chen SA, Smith RT, Specio SE, Balster RL, Paterson NE, Markou A, Zorrilla EP, Koob GF (2007) Extended access to nicotine self-administration leads to dependence: circadian measures, withdrawal measures, and extinction behavior in rats. J Pharmacol Exp Ther 320:180–193

    Article  PubMed  Google Scholar 

  • Paterson NE, Balfour DJ, Markou A (2008) Chronic bupropion differentially alters the reinforcing, reward-enhancing and conditioned motivational properties of nicotine in rats. Nicotine Tob Res 10:995–1008

    Article  PubMed  CAS  Google Scholar 

  • Paterson NE, Froestl W, Markou A (2004) The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology 172:179–186

    Article  PubMed  CAS  Google Scholar 

  • Paterson NE, Markou A (2004) Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology 173:64–72

    Article  PubMed  CAS  Google Scholar 

  • Piasecki TM, Fiore MC, Baker TB (1998) Profiles in discouragement: two studies of variability in the time course of smoking withdrawal symptoms. J Abnorm Psychol 107:238–251

    Article  PubMed  CAS  Google Scholar 

  • Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB (2003) Smoking withdrawal dynamics: II. Improved tests of withdrawal–relapse relations. J Abnorm Psychol 112:14–27

    Article  PubMed  Google Scholar 

  • Roiko SA, Harris AC, LeSage MG, Keyler DE, Pentel PR (2009) Passive immunization with a nicotine-specific monoclonal antibody decreases brain nicotine levels but does not precipitate withdrawal in nicotine-dependent rats. Pharmacol Biochem Behav 93:105–111

    Article  PubMed  CAS  Google Scholar 

  • Rose J, Behm F (2004) Effects of low nicotine content cigarettes on smoke intake. Nicotine Tob Res 6:309–319

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Corrigall WA (1997) Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology 130:28–40

    Article  PubMed  CAS  Google Scholar 

  • Scherer G (1999) Smoking behaviour and compensation: a review of the literature. Psychopharmacology 145:1–20

    Article  PubMed  CAS  Google Scholar 

  • Shiffman S, Gitchell JG, Warner KE, Slade J, Henningfield JE, Pinney JM (2002) Tobacco harm reduction: conceptual structure and nomenclature for analysis and research. Nicotine Tob Res 4(Suppl 2):S113–129

    Article  PubMed  Google Scholar 

  • Shoaib M, Schindler CW, Goldberg SR (1997) Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition. Psychopharmacology 129:35–43

    Article  PubMed  CAS  Google Scholar 

  • Spiller K, Xi ZX, Li X, Ashby CR Jr, Callahan PM, Tehim A, Gardner EL (2009) Varenicline attenuates nicotine-enhanced brain-stimulation reward by activation of alpha4beta2 nicotinic receptors in rats. Neuropharmacology 57:60–66

    Article  PubMed  CAS  Google Scholar 

  • Stead LF, Lancaster T (2007) Interventions to reduce harm from continued tobacco use. Cochrane Database Syst Rev: CD005231

  • Stratton K, Shetty P, Wallace R, Bondurant S (2001) Clearing the smoke: the science base for tobacco harm reduction–executive summary. Tob Control 10:189–195

    Article  PubMed  CAS  Google Scholar 

  • U.S. DHHS (1999) Nicotine addiction: health consequences of smoking. U.S. Department of Health and Human Services

  • Valentine JD, Hokanson JS, Matta SG, Sharp BM (1997) Self-administration in rats allowed unlimited access to nicotine. Psychopharmacology 133:300–304

    Article  PubMed  CAS  Google Scholar 

  • Watkins SS, Epping-Jordan MP, Koob GF, Markou A (1999) Blockade of nicotine self administration with nicotinic antagonists in rats. Pharmacol Biochem Behav 62:743–751

    Article  PubMed  CAS  Google Scholar 

  • Watkins SS, Koob GF, Markou A (2000a) Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob Res 2:19–37

    Article  PubMed  CAS  Google Scholar 

  • Watkins SS, Stinus L, Koob GF, Markou A (2000b) Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. J Pharmacol Exp Ther 292:1053–1064

    PubMed  CAS  Google Scholar 

  • West RJ, Russell MA, Jarvis MJ, Feyerabend C (1984) Does switching to an ultra-low nicotine cigarette induce nicotine withdrawal effects? Psychopharmacology 84:120–123

    Article  PubMed  CAS  Google Scholar 

  • Zacny JP, Stitzer ML (1988) Cigarette brand-switching: effects on smoke exposure and smoking behavior. J Pharmacol Exp Ther 246:619–627

    PubMed  CAS  Google Scholar 

  • Zeller M, Hatsukami D (2009) The Strategic Dialogue on Tobacco Harm Reduction: a vision and blueprint for action in the US. Tob Control 18:324–332

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants T32 DA 07097 (NIDA), F32 DA021935 (NIDA), and P50-DA013333 (NIDA/NCI) and the Minneapolis Medical Research Foundation Translational Addiction Research Program. We would also like to thank Dr. Athina Markou for her helpful advice at the early stages of this research and for providing the opportunity to train with members of her laboratory (especially Jessica Chevrette) in the ICSS methodology.

Conflicts of interest

No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, A.C., Pentel, P.R., Burroughs, D. et al. A lack of association between severity of nicotine withdrawal and individual differences in compensatory nicotine self-administration in rats. Psychopharmacology 217, 153–166 (2011). https://doi.org/10.1007/s00213-011-2273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2273-9

Keywords

Navigation