Skip to main content
Log in

New shape functions for triangular p-FEM using integrated Jacobi polynomials

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, the second order boundary value problem −∇·((x,y)∇u)=f is discretized by the Finite Element Method using piecewise polynomial functions of degree p on a triangular mesh. On the reference element, we define integrated Jacobi polynomials as interior ansatz functions. If is a constant function on each triangle and each triangle has straight edges, we prove that the element stiffness matrix has not more than nonzero matrix entries. An application for preconditioning is given. Numerical examples show the advantages of the proposed basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M. (ed.): Handbook of mathematical functions. Dover-Publications, 1965

  2. Ainsworth, M.: A preconditioner based on domain decomposition for h-p finite element approximation on quasi-uniform meshes. SIAM J. Numer. Anal. 33(4), 1358–1376 (1996)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Demkowicz, L.: Explicit polynomial preserving trace liftings on a triangle. Technical Report TICAM Report 03-47, TICAM, November 2003

  4. Ainsworth, M., Gao, B.: An additive Schwarz preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions. Numer. Math. 85(3), 343–366 (2000)

    Article  MathSciNet  Google Scholar 

  5. Andrews, G.E., Askey, R., Roy, R.: Special functions. Number 71 in Encyclopedia of Mathematics and its applications. Cambridge University Press, 1999

  6. Babuška, I., Craig, A., Mandel, J., Pitkäranta, J.: Efficent preconditioning for the p-version finite element method in two dimensions. SIAM J.Numer.Anal. 28(3), 624–661 (1991)

    Article  Google Scholar 

  7. Babuška, I., Griebel, M., Pitkäranta, J.: The problem of selecting the shape functions for a p-type finite element. Int. Journ. Num. Meth. Eng. 28, 1891–1908 (1989)

    Article  Google Scholar 

  8. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in weighted Sobolev spaces: Basics and trace liftings. Technical Report R 92039, Universite Pierre et Marie Curie, Paris, 1993

  9. Bernardi, C., Maday, Y.: Handbook of Numerical Analysis. vol. 5, chapter Spectral Element Methods, pages 209–486. Elsevier, North-Holland, 1997

  10. Beuchler, S.: Multi-grid solver for the inner problem in domain decomposition methods for p-FEM. SIAM J. Numer. Anal. 40(3), 928–944 (2002)

    Article  MathSciNet  Google Scholar 

  11. Beuchler, S., Schneider, R., Schwab, C.: Multiresolution weighted norm equivalences and applications. Numer. Math. 98(1), 67–97 (2004)

    Article  MathSciNet  Google Scholar 

  12. Beuchler, S., Schöberl, J.: New shape functions for triangular p-fem using integrated jacobi polynomials. Technical Report Report RICAM 2004/18, Johann Radon Institute for Computational and Applied Mathematics, Linz, December 2004

  13. Beuchler, S., Schöberl, J.: Optimal extensions on tensor product meshes. App. Numer. Math. 54, 391–405 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comp. 6, 345 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. George, A., Liu, J.W.-H.: Computer solution of large sparse positive definite systems. Prenctice-Hall Inc. Englewood Cliffs. New Jersey, 1981

  17. Guo, B., Cao, W.: A preconditioner for the h-p version of the finite element method in two dimensions. Numer. Math. 75, 59–77 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guo, B., Cao, W.: An iterative and parallel solver based on domain decomposition for the hp- version of the finite element method. J. Comput. Appl. Math. 83, 71–85 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haase, G., Langer, U., Meyer, A.: Domain decomposition methods with inexact subdomain solvers. Numerical Linear Algebra with Applications 1(1), 27–41 (1991)

    MathSciNet  Google Scholar 

  20. Ivanov, S.A., Korneev, V.G.: On the preconditioning in the domain decomposition technique for the p-version finite element method. Part I. Technical Report SPC 95-35, Technische Universität Chemnitz-Zwickau, December 1995

  21. Ivanov, S.A., Korneev, V.G.: On the preconditioning in the domain decomposition technique for the p-version finite element method. Part II. Technical Report SPC 95-36, Technische Universität Chemnitz-Zwickau, December 1995

  22. Jensen, S., Korneev, V.G.: On domain decomposition preconditioning in the hierarchical p-version of the finite element method. Comput. Meth. Appl. Mech. Eng. 150(1–4), 215–238 (1997)

    Google Scholar 

  23. Karniadakis, G.M., Sherwin, S.J.: Spectral/HP Element Methods for CFD. Oxford University Press, Oxford, 1999

  24. Korneev, V., Langer, U., Xanthis, L.: On fast domain decomposition methods solving procedures for hp-discretizations of 3d elliptic problems. Comput. Meth. Appl. Math. 3(4), 536–559 (2003)

    MathSciNet  Google Scholar 

  25. Korneev, V.G.: 37(7), 1–15 (2001)

  26. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16(2), 346–358 (1979)

    Article  MathSciNet  Google Scholar 

  27. Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: Fast quadrature. Comp. Meth. Appl. Mech. Eng. 190, 4339–4364 (1999)

    Article  Google Scholar 

  28. Munoz-Sola, R.: Polynomial liftings on a tetrahedron and applications to the h-p version of the finite element method in three dimensions. SIAM J. Numer. Anal. 34(1), 282–314 (1996)

    Article  MathSciNet  Google Scholar 

  29. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comp. Phys. 37–80 (1980)

  30. Schwab, C.: p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. Clarendon Press, Oxford, 1998

  31. Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. Chapman and Hall, CRC Press, 2003

  32. Szabo, B., Babuška, I.: Finite Element Analysis. Wiley, 1991

  33. Tricomi, F.G.: Vorlesungen über Orthogonalreihen. Springer, Berlin-Göttingen-Heidelberg, 1955

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Beuchler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beuchler, S., Schöberl, J. New shape functions for triangular p-FEM using integrated Jacobi polynomials. Numer. Math. 103, 339–366 (2006). https://doi.org/10.1007/s00211-006-0681-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0681-2

Keywords

Navigation