Skip to main content
Log in

Role of (−)-epigallocatechin-3-gallate in cell viability, lipogenesis, and retinol-binding protein 4 expression in adipocytes

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

(−)-Epigallocatechin-3-gallate (EGCG), a bioactive compound of green tea, is known to combat obesity by reducing the viability and lipid accumulation of adipocytes. In this study, we evaluated the mechanism and clinical relevance on those actions of EGCG. We measured the viability of 3T3-L1 preadipocytes and adipocytes by the 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide assay. Lipid accumulation was measured by Oil Red O staining. Intracellular accumulation of reactive oxygen species (ROS) was determined using a flow cytometer. Cellular glucose uptake was determined with 2-deoxy-[3H]-glucose. The protein levels of peroxisome proliferator-activated receptor (PPAR)-γ and adiponectin in 3T3-L1 adipocytes, as well as the protein level and secretion of plasma retinol-binding protein (RBP4) in human adipocytes, were measured by western blot. EGCG at concentrations higher than 10 μM induced ROS generation and decreased the viability and lipid accumulation of adipocytes. It also decreased the expression of PPAR-γ and adiponectin. At concentrations readily achievable in human plasma via green tea intake (≤10 μM), EGCG inhibited cellular glucose uptake and enhanced the expression and secretion of RBP4 in adipocytes. Pharmacological doses of EGCG showed cytotoxic effects in preadipocytes and adipocytes. EGCG-mediated glucose uptake inhibition in adipocytes may be clinically relevant and is probably linked to the increase in the expression and secretion of RBP4. Because secreted RBP4 from adipocytes inhibits muscular glucose uptake and enhance hepatic glucose output, the systemic effect of EGCG associated with its effect on RBP4 secretion should be further determined, as it may negatively regulate whole-body insulin sensitivity, contrary to general belief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  CAS  PubMed  Google Scholar 

  • Chow HH, Cai Y, Alberts DS, Hakim I, Dorr R, Shahi F et al (2001) Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomark Prev 10:53–58

    CAS  Google Scholar 

  • Fischer-Posovszky P, Wabitsch M, Hochberg Z (2007) Endocrinology of adipose tissue—an update. Horm Metab Res 39:314–321

    Article  CAS  PubMed  Google Scholar 

  • Fukino Y, Shimbo M, Aoki N, Okubo T, Iso H (2005) Randomized controlled trial for an effect of green tea consumption on insulin resistance and inflammation markers. J Nutr Sci Vitaminol 51:335–342

    CAS  PubMed  Google Scholar 

  • Graham TE, Kahn BB (2007) Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication in obesity and type 2 diabetes. Horm Metab Res 39:717–721

    Article  CAS  PubMed  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  PubMed  Google Scholar 

  • Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH et al (2005) Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288:C1094–C1108

    Article  CAS  PubMed  Google Scholar 

  • Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW et al (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694–699

    Article  CAS  PubMed  Google Scholar 

  • Isbrucker RA, Bausch J, Edwards JA, Wolz E (2006) Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: genotoxicity. Food Chem Toxicol 44:626–635

    Article  CAS  PubMed  Google Scholar 

  • Kahn BB (1994) Dietary regulation of glucose transporter gene expression: tissue specific effects in adipose cells and muscle. J Nutr 124:S1289–S1295

    Google Scholar 

  • Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K et al (2000) Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48:5618–5623

    Article  CAS  PubMed  Google Scholar 

  • Li L, Stillemark-Billton P, Beck C, Bostrom P, Andersson L, Rutberg M et al (2006) Epigallocatechin gallate increases the formation of cytosolic lipid droplets and decreases the secretion of apoB-100 VLDL. J Lipid Res 47:67–77

    Article  CAS  PubMed  Google Scholar 

  • Li W, Nie S, Yu Q, Xie M (2009) (−)-Epigallocatechin-3-gallate induces apoptosis of human hepatoma cells by mitochondrial pathways related to reactive oxygen species. J Agric Food Chem 57:6685–6691

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Della-Fera MA, Baile CA (2005) Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res 13:982–990

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33

    Article  CAS  PubMed  Google Scholar 

  • Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS (2007) Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 15:2571–2582

    Article  CAS  PubMed  Google Scholar 

  • Morikawa K, Ikeda C, Nonaka M, Pei S, Mochizuki M, Mori A et al (2007) Epigallocatechin gallate-induced apoptosis does not affect adipocyte conversion of preadipocytes. Cell Biol Int 31:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N et al (2003) Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br J Pharmacol 140:487–499

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T et al (2008) Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol Pharm Bull 31:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Jin JY, Baek WK, Park SH, Sung HY, Kim YK et al (2010) Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption. J Physiol Pharmacol 60(4):101–109

    Google Scholar 

  • Polychronopoulos E, Zeimbekis A, Kastorini CM, Papairakleous N, Vlachou I, Bountziouka V et al (2008) Effects of black and green tea consumption on blood glucose levels in non-obese elderly men and women from Mediterranean Islands (MEDIS epidemiological study). Eur J Nutr 47:10–16

    Article  PubMed  Google Scholar 

  • Sakurai N, Mochizuki K, Kameji H, Shimada M, Goda T (2009) (−)-Epigallocatechin gallate enhances the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes at an early stage of differentiation. Nutrition 25:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 341:248–257

    Article  CAS  PubMed  Google Scholar 

  • Slavic K, Derbyshire ET, Naftalin RJ, Krishna S, Staines HM (2009) Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues. Mol Biochem Parasitol 168:113–116

    Article  CAS  PubMed  Google Scholar 

  • Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 386:471–478

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ et al (2009) The effects of green tea (−)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol Nutr Food Res 53:349–360

    Article  CAS  PubMed  Google Scholar 

  • Wu BT, Hung PF, Chen HC, Huang RN, Chang HH, Kao YH (2005a) The apoptotic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway. J Agric Food Chem 53:5695–5701

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Ouyang JP, Wu K, Wang SS, Wen CY, Xia ZY (2005b) Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphatase 1B in the skeletal muscle of fat-fed, streptozotocin-treated diabetic rats. Br J Pharmacol 146:234–243

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  CAS  PubMed  Google Scholar 

  • Yin ST, Tang ML, Deng HM, Xing TR, Chen JT, Wang HL et al (2009) Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 379:551–564

    Article  CAS  PubMed  Google Scholar 

  • Yudkin JS (2007) Inflammation, obesity, and the metabolic syndrome. Horm Metab Res 39:707–709

    Article  CAS  PubMed  Google Scholar 

  • Yun SY, Kim SP, Song DK (2006) Effects of (−)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. Eur J Pharmacol 541:115–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0091360 and R0A-2007-000-20085-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Kyu Song.

Additional information

Jin Han and Dae-Kyu Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, HY., Hong, CG., Suh, YS. et al. Role of (−)-epigallocatechin-3-gallate in cell viability, lipogenesis, and retinol-binding protein 4 expression in adipocytes. Naunyn-Schmied Arch Pharmacol 382, 303–310 (2010). https://doi.org/10.1007/s00210-010-0547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0547-0

Keywords

Navigation